
Session [437] – Computational Methods and Numerical Analysis II 
 
An object-oriented framework for modular chemical process simulation [437a] 
 
Jing Chen and Raymond A. Adomaitis* 
Department of Chemical Engineering and Institute for Systems Research 
University of Maryland, College Park, 20742  
 

Abstract 
 

This paper discussed the development of a set of object-oriented modular simulation 
tools for solving lumped and distributed parameter models generated in process design and 
simulation.  The application of object-oriented design (OOD) and modular approach greatly 
improves current modeling and simulation capability.  Modularized components can be easily 
integrated/adapted to form a new user-defined system.  The system can be solved using a 
sequential or simultaneous approach depending on the specific applications.  Also, solutions to 
different modules can be computed with separate solver algorithms. 

 
Our simulation framework currently is implemented using MATLAB.  Design patterns 

are used to present the system architecture design and give inexperienced users a better 
understanding of object-oriented analysis and design.  With the proposed design patterns, 
users can create their object-oriented modular system through object-oriented programming 
languages of their choice. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
* Corresponding author.  Email: adomaiti@umd.edu 



1. Introduction 
 

Chemical Vapor Deposition (CVD) processes constitute an important unit operation for 
micro electronic device fabrication in the semiconductor industry.  Reactant gases are induced 
into an atmospheric or low-pressure chamber to react and deposit a layer of thin solid film on a 
heated wafer surface.  A wide variety of materials can be deposited by CVD, such as tungsten, 
copper, gallium, aluminum, poly-silicon and transition group compounds such as Ta2O5.  
Because the deposited materials generally act as contacts, interconnects, capacitors, 
transistors, etc in the integrated circuit, the ability to reliably deposit uniform thin films is a 
critical and essential issue to successful semiconductor device fabrication in semiconductor 
industry.  Because of the complexity of the physical and chemical situation inside the reaction 
chamber and the difficulty of real-time monitoring and control of reaction conditions, theoretical 
description and simulation of the deposition process are necessary to understand the transport 
and reaction situations in the reactor.  Simulators of the deposition process are also powerful 
tools for process optimization and control.  However, changing or rewriting CVD simulators to 
adapt to the various types of CVD coupled with the evolution of CVD reactor designs makes 
current simulation approaches increasingly costly.  A good set of simulation tools featuring 
reusability and extensibility would facilitate the process modeling, simulation and optimization 
at a relatively low cost. 
 

The motivation of this research is to develop a set of flexible, expansible and reusable 
open-structure computational tools for chemical process design, simulation and optimization.  
By using object-oriented techniques and a modular approach, the proposed framework offers 
such advantages: code reusability, modular components easily tailored to different 
applications, and the user-defined system easy to maintain.  In the following section, we will 
introduce the design of the system framework and discuss features of packages developed in 
the framework.  Then a semiconductor processing simulation example is provided to 
demonstrate the utility of the current framework.  Finally, the paper concludes and presents the 
future work of this research. 

 
2. Framework Architecture 

 
The primary goal of our framework design is to provide a flexible and extensible 

structure for solving a wide range of chemical process simulation problems.  The proposed 
framework is based on the extensive use of object-oriented programming techniques.  Our 
approach is to use modularized models to encapsulate details from the user, and different 
users can focus on different model building.  Composite modules or large modeling systems 
can be formed easily by combining the modular models.  Information exchange between 
modules through an interface makes it possible to build a hybrid modeling system with 
modules having lumped and distributed parameter models.  Also, the modular structure makes 
it easier track the sources of solution divergence or other numerical problems.  The module 
behavior can be studied independently by separating modules from the system.  The well-
defined modules become reusable parts of modeling library. 
 

As shown in Figure 1, the main packages in the framework include physical property 
database, modular components, systems, relations and solver tools.  The property database 
package works like a library, looking up species thermal and physical properties and 
calculating them for a given temperature, pressure or composition.  The modular components 



package includes stand-alone modules that encapsulate subsystem design information and 
modeling equations.  The function of systems and relations is to integrate independent 
modules together to form the user-defined systems.  This system will be solved by the 
methods offered in the solver packages. 

 
Property

Data
Modular

components

Systems Relation

SolversManager

Solutions  
 

Figure 1.  Framework architecture 
 

We present our software design ideas with emphasis on the design patterns 
methodology.  A design pattern is a good solution to a general or commonly recurring design 
problem and it can be reused again and again. The use of design patterns has multiple 
benefits: saves designer lots of time and effort; makes the communication between designer 
and user or other programmers easier and clearer; makes the design more elegant, flexible, 
extensible and reusable; avoids dealing with the details in the early stage of design by giving 
the designer a higher-level view on the problems and on the process of design (Gamma, Helm, 
Johnson and Vlissides, 1995; Cooper, 2000; Shalloway et al., 2002). 
 

We use the mediator pattern for the communication among objects of module classes.  
Façade pattern is used to provide a simple interface to the subsystem of ooMWR tools.  We 
have also used the strategy pattern and adaptor pattern in the solver package to provide 
different algorithms and integrate other numerical packages. 

 
3. Framework Implementation 
  

Current database package is developed to provide methods for determining properties 
of non-polar and polar gases and organic and inorganic gases with emphasis on supporting 
common semiconductor process gases such as silane, tungsten hexafluoride and 
trimethylgallium.  The thermal physical properties include viscosity, thermal conductivity, 
diffusivity, heat capacity, molecular weight and density of pure gases and mixtures at ideal gas 
state.  This package is implemented in JAVA for both web applications and local simulations.  
An interface wrapper class, GasMixture, is developed in MATLAB to facilitate data retrieval 
from JAVA objects. 

 
Based on the properties of modularity, a standalone module class is formulated as 

follows: constructor method, residual or equation method, and/or other methods.  All process 



design, equipment geometry, and related information are stored in the constructor method.  If 
the variables to be found can be expressed by the modeling equations in terms of parameters 
explicitly, i.e., in the form of )( pgx = , then these equations should be put in the equation 
method; if only implicit expressions for variables available, i.e., 0),( =pxf , they should be 
stored in the residual method.  Modules can be solved individually to test its convergence 
behavior. 

 
ooMWR tools is developed for solving boundary value problems (BVPs) in relatively 

simple geometries using global trial function expansions and weighted residual methods 
(MWR) (Adomaitis, 2002; Adomaitis et al., 2000; Lin et al., 1999).  By using ooMWR tools, a 
PDE system is discretized and converted to an algebraic system, or ODE/DAE systems (for 
dynamic cases).  The resulting systems then can be solved by the tools developed in solvers 
classes which will be introduced in the following sections.  To integrate the ooMWR tools into 
the current framework, façade pattern is applied to develop the mwrmodel class, which offering 
an interface to ooMWR class subsystem.  The façade pattern wraps a complex subsystem 
together and provides user a simplified interface to access the functionality of the wrapped 
complex subsystem to makes it easier to use. 

 
To integrate individual module objects together to form a desired modeling system, and 

still preserve the loose coupling and flexibility, we create a class called relation.  The 
communication among objects is administrated through the methods of the systems class, 
which is developed using mediator pattern.  The mediator pattern defines an object that is the 
only one of knowing and coordinating other classes in the system.  These classes 
communicate with or through the mediator without referring each other explicitly.  The systems 
class is mainly used for solving coupled modules simultaneously, while independent modules 
can be solved sequentially.   The current computational framework supports both approaches. 

 
In the solver package, we provide various numerical computational tools for solving AE, 

ODE or DAE systems.  We have a base class, solvers, which define data fields, such as, var, 
param, resid, solverset, currTime, etc. for subclasses usage, and offer many utility methods, 
like unpack, display, get, set, columnnae, residual and equation, to facilitate derived classes’ 
operations.  To solve linear/nonlinear systems, the class naemodel is developed using strategy 
pattern.  The strategy pattern supports a family of algorithms, which conceptually do the same 
things but have different implementations.  Different numerical algorithms are implemented as 
member methods of the naemodel class.  To be able to use existing solvers in MATLAB, we 
design an interface, class odemodel, using the adapter pattern to integrate MATLAB built-in 
ODE/DAE solver packages into our system. 

 
4. Tungsten CVD Simulation 

 
We now consider the problem of simulating tungsten CVD process both at steady state 

and dynamically over the entire processing operation.  The detailed model analysis, heat 
transfer parameter selections and reactor geometry can be found in the paper (Adomaitis, 
2003).  To describe one-dimensional thermal dynamics on the surface of wafer, susceptor and 
guard ring assembly, the energy balance on the wafer assembly surface can be written as: 
 



( ) 1 ( , )p
rad conv lamp

C T Tz z k T r r Q Q Q
t r r r

ρ
∂ ∂ ∂ ∆ = ∆ + + + ∂ ∂ ∂ 

 

with boundary conditions and initial condition, 

00, 0; , 0; 0,T Tr r R t T T
r r

∂ ∂= = = = = =
∂ ∂

 

 
Instead of putting all equations into a single complex module to get the temperature 

distribution of wafer assembly, several small and simple modules are made up for describing 
different heat transfer phenomena.  Four independent module classes are defined: wafer, 
lampflux, showerheadflux and gasflux.  The class diagram of four module classes is shown in 
Figure 2. 

 
wafer

+constructor()
+residual()
+growthrate()
+plot()

wafersurr_rad

+constructor()
+equation()
+plot()

wafergas_conv

+constructor()
+equation()
+plot()

heatinglamp

+constructor()
+equation()
+plot()  

 
Figure 2. Class diagram of module classes 

 
To obtain the dynamic solution of wafer temperature, we assume the initial temperature 

at wafer surface is 300K, and the wafer is heated by heating lamp for 10 min and cool down for 
10 min.  The system assembled by different modules is solved to obtain steady state and 
dynamic solutions (illustrated in Figure 3). 

  
 

Figure 3. Steady state and dynamic temperature distribution on the wafer assembly 
 



5. Conclusions 
 

The development of this object-oriented computational package offers a set of flexible 
and adaptable tools for solving large systems consisting of different application models.  The 
application of object-oriented design (OOD) and modular approach greatly improves current 
modeling and simulation capability.  The application of OOD reduces the development cycles 
of designing new simulators and lowers the costs of process design and simulations.  
Modularized components can be easily integrated/adapted to form a new user-defined system.  
Solutions to different modules can be computed with separate solver algorithms. 

 
This simulation framework is implemented using MATLAB.  The open architecture of the 

software makes it possible to integrate other numerical techniques and computational 
packages, further increasing the software flexibility and reducing development time.  
 

The use of design patterns, which offers a high-level abstract structure to avoid dealing 
with programming details in the early stage of simulator development, increases simulator 
design procedure efficiency, and gives inexperienced users a better understanding of object-
oriented analysis and design.  
 
 
References: 
 
Adomaitis, R. A. (2002), Objects for MWR, Computers Chem. Eng., 26, 981-998. 
Adomaitis, R. A. (2003), A reduced-basis discretization method for chemical vapor deposition 
reactor simulation, Mathematical and Computer Modeling, 0, 1-17. 
Adomaitis, R. A., Lin, Y. H. and Chang, H. Y. (2000), A computational framework for boundary-
value problem based simulations, Simulation, 74 (1), 28-38. 
Cooper, J. W. (2000), JAVA design patterns, Addison-Wesley. 
Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995), Design Patterns: Elements of 
reusable object-oriented software, Addison-Wesley. 
Lin, Y. H., Chang, H. Y. and Adomaitis, R. A. (1999), MWRtools: a library for weighted residual 
method calculations, Computers Chem. Eng., 23, 1041-1061. 
Shalloway, A. and Trott, J. R. (2002), Design patterns explained, Addison-Wesley. 


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



