
Reduced-order observers for high dimensional chemical processes 
 

Abhay K. Singh and Juergen Hahn 

Department of Chemical Engineering 
Texas A&M University 

3122 TAMU 
College Station, Texas, 77845-3122,U.S.A. 

 
 
 

Keywords: Balancing, model reduction, observability, reduced-order observer 
 
 
1. Introduction 
 

Monitoring chemical processes in the most reliable and cost effective manner is a vital 
issue for the process industries. This goal can be achieved by the use of observers which 
estimate many of the process variables from the available measurements. Different observer 
design techniques have been proposed and extensively investigated over the last four 
decades. The differences between these approaches stem from the property if the model is 
linear or nonlinear and the computation procedure used for the calculation of the observer gain 
[5, 6, 9]. However, problems can arise for systems where the degree of observability varies 
strongly from one state to another. This is almost always the case if the plant is correctly 
described by a distributed system which is approximated by a set of ordinary differential 
equations or if the system has a high dimension but only a few measurements are available. 
While it should be theoretically possible to design an observer which correctly estimates the 
values of all states, assuming that the plant is observable, this is not the case in practice due 
to plant-model mismatch as well as the presence of measurement noise [1,10]. In fact, 
observers will usually attenuate sensor noise for most systems where more than a few states 
need to be estimated from each measurement. 
 

This work addresses these issues by presenting two observer design techniques, both 
of which can be applied with modifications to either linear or nonlinear systems. The difference 
between the two presented observer design methodologies is that the first one is ideally suited 
for systems without inputs, while the second one takes the input-to-state behavior into account 
in addition to the state-to-output behavior. These new design techniques can be applied to 
distributed system [2], but are also applicable to lumped systems. The main idea behind the 
presented observer designs is that instead of trying to reconstruct the values of all states of a 
system, only states having a significant degree of observability will be included in the observer. 
This results in low-order observers which are relatively insensitive to measurement noise while 
at the same time allows reconstruction of states which contribute most to the state-to-output 
behavior. It is important to point out that the resulting low-order observers are different from the 
traditional definition of a reduced-order observer, i.e. the proposed technique designs 
observers for the modes which are most observable instead of reconstructing all states except 
the measured ones as is the case for traditional reduced-order observer designs.  
 



The two presented observer designs are based upon reducing the original system via a 
projection. The two methods differ from each other in that for systems without inputs, a 
singular value decomposition of the observability covariance matrix is used for computation of 
the projection, whereas the second observer design technique relies on a projection which 
balances the input-to-state and the state-to-output behavior. 

 
The proposed methods for observer design have been applied to two examples: one 

distillation column with five trays and another one with 30 trays. It is shown that it is possible to 
design a low-order observer which reconstructs the values of all states of the system with a 
low number of measurements. Additionally, the observer designs are performed for the original 
nonlinear system as well as for a linearized version.  
 
2. Reduced-order observer 
 

The presented work proposes two types of observers. The first kind is restricted to 
system without input. In this approach the linear system described by (1) is  

Axx =&  
Cxy =  

(1a) 
(1b) 

reduced through a projection based on the singular value decomposition of the observability 
covariance matrix [8]. The states important for the state-to-output behavior are retained in the 
reduced system and the observer is designed for the resulting low-order system.  In order to 
obtain a reduced-order system, the observability covariance matrix ( OW ) is calculated for the 
system described by (1) and the matrix is transformed 
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where T is the transformation matrix such that the columns of T consists of the singular vectors 
of  OW  and the s'σ  are the singular values of OW . Accordingly, the state space transformation  

xTx = results in the following transformed system: 
xAxATTx == −1&  

xCTy =  
(4a) 
(4b) 

This system can be partitioned into more important )( 1x  and less important states )( 2x  
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(5b) 

The less important states )( 2x correspond to the small singular values and can be truncated:     



1111 xAx =&  

11xCy =  

(6a) 
(6b) 

The reduced order observer is designed for the system given by (6) and results in 
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(7a) 
 

(7b) 
(7c) 

where L is the gain of the observer. 
 

For nonlinear systems 
)(xfx =&  
)(xhy =  

(8a) 
(8b) 

it is possible to compute the observability covariance matrix [8] and the transformation matrix T 
is computed by singular value decomposition of the observability covariance matrix. The 
transformed nonlinear system is given by:                          

)()(1 xfxTfTx == −&  
)()( xhxThy ==  

(9a) 
(9b) 

The states not contributing to the state-to-output behavior in (9) can be truncated and the 
reduced system is given by 
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(10a) 
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(10c) 

where P is a projection matrix of the form ]0[I   and its rank is equal to the dimension of the 
reduced-order model. The corresponding nonlinear observer 
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(11a) 
(11b) 
(11c) 
(11d) 

contains the observer gain Lwhich is computed based on the linearized version of the 
nonlinear model (8), similar to an extended Luenberger observer. 
 

The second type of observer proposed in this work is applicable to systems with inputs. 
A linear system  

BuAxx +=&  
Cxy =  

(12a) 
(12b) 

described by (12) can be reduced by balanced truncation such that the states contributing the 
most to the input-output behavior of the system are retained in the reduced system. This model 
reduction is performed by first transforming the system 

uBxATBuxTATx +=+= −1&  (13a) 



xCTy 1−= , (13b)

partitioning the states of the balanced system  
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and truncating the states x2: 
uBxAx 11111 +=&  

11xCy =  
(15a) 
(15b) 

A reduced-order observer is the designed for the truncated system: 
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The extension to nonlinear systems  

),( uxfx =&  
)(xhy =  

(17a) 
(17b) 

is similar to what has been presented for the observer without inputs. The main difference is 
that the coordinate transformation Txx = is computed such that the observability and 
controllability covariance matrices are diagonal and equal. The transformed system is given 
by:  

),(),( 1 uxfuxTTfx == −&  
)()( 1 xhxThy == −  

(18a) 
(18b) 

After truncation the system is given by: 
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where the rank of P is equal to the dimension of the reduced-order nonlinear system. The 
observer for the nonlinear system is given by:    
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3. Illustrative examples 
 
3.1 Reduced-order design for systems without inputs  
 
Linear system 
 

The proposed observer design has been applied to a 5-tray distillation column model 
taken from the literature [7]. The model has seven states and the top product of the column is 
measured. The reduced-order observer has four states. Figure1 shows the response of the 
seventh state for the plant and the observer. Analyzing the response of proposed reduced-
order observer and full-order observer, it can be observed that for this case the performance of 
the reduced-order observer is comparable to the full-order observer.  

  
In the second example, a 30-tray distillation column model is considered [3]. This model 

has 32 states and the 6th state is measured. A reduced-order observer with four states has 
been designed. Figure2 shows the response of the 5th state for the full-order and reduced 
order observer based upon a model with 4 states. The results clearly show that the observer 
performance for states with good observability is comparable for the full-order and the 
reduced-order observer. However, for states having poor observability it can be noted that full-
order observer result in high gains and reconstruction of these state via a full-order observer 
may result in very large overshoot. As a result, a full order observer is highly sensitive to noise. 
The performance of the reduced observer for poorly observed states is not as good as for the 
strongly observable states but it does not exhibit the problem of large overshoot and 
converges to the same steady state. 

 
Figure 1. Response of the 7th state for reduced order and full order observer. 



 
 

 
Figure 2. Response of the 5th state for reduced-order and full-order observers. 

 
 

 
Figure 3. 7th state response for reduced order observer. 



Nonlinear system 
 

The designed reduced-order observer for the 32 state nonlinear distillation model [3] 
with one measurement has six states. From Figure 3 it can be seen that the response of the 
7th state reconstructed by the reduced order observer is in good agreement with the plant.   
 
3.2 Reduced-order design for systems with inputs 
 
Linear system 
 

The reduced-order observer for a 5-tray distillation column has 4 states. From Figure 4, 
it can be observed that the reduced-order observer performs as good as the full-order observer 
for input changes and shows good tracking of the dynamic behavior of the plant.  

 
In the second example, a fifth order, reduced observer is designed for the 30-tray 

distillation column model. Figure 5 shows the response of the 7th state for the observer and 
the plant. It can be seen that the reduced-order observer performs similar to the full order 
observer. 

 

 
Figure 4. Response of the 7th state for reduced order observer and full order observer 

 
 



 
Figure 5. Response of 7th state for reduced-order observer and full order observer 

 
Figure 6. Response of 25th state for reduced order and full order observer with measurement 
noise. 



 
When the state reconstruction under the influence of noise is considered then the 

reduced-order observer shows advantages as it does not require high gains. This is illustrated 
in Figure 6 where the state response of the reduced and the full-order observer for the 25th 
state are shown under the influence of measurement noise. It can be concluded that the 
measurement noise is amplified by the high gain in the full order observer whereas the 
reduced-order observer is insensitive to measurement noise. 
   
Nonlinear system 
 

The reduced order observer for the nonlinear 30-tray distillation column has 8 states. 
Figure 7 shows that the observer tracks the dynamic behavior of the plant for input changes 
very well. 

 
Figure 7. Response of 5th state for reduced-order observer 

 
4. Conclusion 
 

The presented work proposes two types of observer design, one for systems with and 
one for model without inputs. Both reduced-order observer designs can be applied to linear as 
well as nonlinear systems. While performance of the presented observers is comparable to 
full-order observers, the reduced-order observers have certain advantages for high 
dimensional systems: 
1) They are simpler to design as only states which contribute to the observable behavior of the 
process are included in the model. 
2) The reduced order observer is not sensitive to noise, unlike the full-order observer for large-
scale system. 
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