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Abstract We propose a systematic decision procedure which helps us identified vital few 
causes (VFCs) of variation in an industrial large-scale chemical process. The previous 
process improvement strategies require significant time of analysis when applied to a 
large-scale chemical process with complex causal relationships because they are just 
provide various tools or simple heuristics to identify VFCs. On the other hand, the 
conventional variable selection methods can not guarantee their performance to identify 
the reasons of the empirical correlation. The proposed stepwise decision procedure using 
systematic decision methods enables to reduce analysis time since the focus is 
systematically shifted to the significant causes for variation. Additionally, accuracy of the 
identified VFCs is improved using a causal analysis based on technical information as well 
as a correlation analysis based on a statistical hypothesis test. This procedure has been 
successfully applied to purified terephthalic acid (PTA) process to discover VFCs. The 
identified VFCs have been validated, and they have greatly contributed to improve the 
degraded process. 
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1. Introduction  

In large-scale chemical process, the quality of the final product is not right, buy the 
causes remain unknown, frequently. Variation in quality can be caused by various 
operational variations and disturbances, but the manufacturer needs VFCs that can be 
easily used at improvement of process. Generally, design of experiments (DOE) can be 
considered in order to evaluate the factors that affect the quality and to find optimal 
operating condition prior to improvement of process. DOE force the process to operate in 
certain predefined conditions according to a properly designed set of experiments. If we do 
not know vital causes and have too many candidates, we must accept a heavy cost of 
experiments and take a risk of obtaining a low-quality product or threaten the security of 
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the process during experiments. Therefore, to consistently guarantee product quality 
regardless of operational variations and disturbances, it is important to identify VFCs that 
make major impact on the quality variation. The selected VFCs allow us to focus our 
efforts on removing their contributions to the defects of quality 

The previous process improvement strategies, such as Six Sigma, which have been 
applied in practice and have proven to be successful1 provide various supporting tools to 
identify VFCs: the qualitative ones such as fishbone diagrams, process mapping, and 
pareto charts and the quantitative ones such as control chart, ANOVA, multivariate chart, 
correlation study, and histogram.2-5 The chemical process has many potential causes of 
variations and their causal relationships are complex due to recycle loop, buffering, and 
control system. These strategies are so limited to provide usable tools and/or simple 
heuristics for identifying vital causes6 that significant amount of analysis time is required 
due to their ambiguous decision procedure based on ‘intelligent guess’ when they applied 
to the chemical process. It’s successful identification of VFCs depends on the empirical 
knowledge of professionals.  

There are many systematic solutions to the problem of variable selection, however most 
of methods may be applied to chemometric data and structure-activity relationship data 
rather than process data. Currently, Lazraq compare the effectiveness of several variable 
selection methods in the context of PLS regression, on several real datasets of chemical 
manufacturing processes.7,8 These statistical methods are based on the “observed 
variability” of the process. In the analysis of observed data with these statistical methods, 
historical quantitative data are so distorted due to time delay, operational noise, and 
sensor error that it is difficult to guarantee accuracy of extracted variables. Furthermore, 
the variables significantly correlated with the final quality do not necessarily cause the 
variation of quality. It is impossible to identify the reasons of the observed correlation, 
unless empirical models are supplemented with technical information of the process.9  

In this study, we newly propose a systematic decision procedure which helps us identify 
VFCs used for improving a large-scale chemical process. The proposed methodology 
allows us to handle the complexity of large-scale chemical process by deciding the 
potential causes and the VFCs, stepwise. At the first step, the potential causes are 
selected using systematic decision methods such as HOQ and 20:80 rule based on 
empirical knowledge without requiring a subjective decision by a professional. At the 
second step, VFCs are screened by analyzing causality and correlation based on technical 
information which enable VFCs to be robust for noise of observation. The proposed 
approaches have been validated through the industrial application to the PTA 
manufacturing process. 

 
2. Proposed Methodology  

The proposed methodology consists of two steps such as identification of potential 



 

causes and screening VFCs.  
2.1. Identify potential causes of variation. Prior to identify VFCs, the potential causes 

for variation of a critical to quality (CTQ) which is the key to the quality improvement 
should be firstly identified to reduce candidates of VFCs. Generally in the chemical 
process, the several sub-processes have several tens of processing systems that affect 
the CTQ due to hundreds of thousands of variation sources of them such as production 
load, feed composition, catalyst, operating condition, recycle, equipment trouble, operator 
variation, and so on. The significant amount of time is needed to analyze their complex 
causality and correlation. Therefore it is not a good choice to identify the VFCs among all 
the candidates though all influence of them on the CTQ are not significant. Screening 
potential causes contributes to reduce analysis time and to improve an accuracy of 
analysis by handling complexity of the large-scale process. 

First of all, brainstorming is performed to select important processing systems affect the 
CTQ, mainly. And then, to identify potential causes of variation, the qualitative data about 
possible sources, which may affect the CTQ, are collected using questionnaire based on 
the proposed standard candidates of variation causes. A good approach for the collection 
of all the possible causes is provided as 5M1E (Man, Materials, Manufacture, Machine, 
Measurements, and Environment) by Ashton.5 However, the 5M1E give only categories on 
a higher level so that it is difficult to investigate all the specific sources in the large-scale 
chemical process. The proposed standard candidates helps the respondents to find out all 
the specific sources which can occur in the target process without missing ones. The 
questionnaire ask several professional engineers and operators to select one of the 4 
levels of strong, medium, weak and unclear according to the correlations between CTQ 
and standard candidates in the selected major processing systems. This operational 
knowledge based analysis is understandable as well as acceptable to the field.  

For the first time, HOQ is introduced to the proposed methodology in order to plays a 
role to qualify and order influences of causes on the CTQ using the large amount of 
qualitative information obtained from the questionnaire. Thereby we can systematically find 
out what are the potential causes for the variation of the CTQ. HOQ originated as a 
systematic technique for identifying those product features which contribute strongly to 
product quality, and where engineering effort is needed.11 The matrix rows represent the 
sources of causes, and the columns the respondents. The central part of the matrix is used 
to show the relationships between the causes and the CTQ determined by each 
respondent. Each selected level is scored by exchanging from strong, medium, weak and 
unclear into 9, 3, 1 and –1, respectively. The right hand side of the central matrix is used to 
record the weight which represent relative importance. The weight is calculated according 
to the variation of opinions from respondents as like eq. 1. Finally, the related score is 
decided by multiplying the average score by the weight.  

nss n

j iji /
1∑ =

=v           (1) 



 

1)(

1

1
2 +−

=
∑ =

n

j iij

i
ss

w         (2) 

ii
r
i wss =           (3) 

where, n  is the number of respondents, ijs  is the score of i -th cause from j -th 

respondent, is  is the average score of i -th cause, iw  is the weight of i -th cause, and 

r
is  is the related score of i -th cause. The causes are ordered in an ascending series for 

the relative score using pareto chart. We select the possible sources whose cumulative 
score takes more than 80 percent of the summation of all the related scores. And then, the 
potential causes are specified from the possible sources through brainstorming. These 
potential causes can be classified into an operational variable that represent quantitative 
data and a conditional variable that indicate qualitative information. Some of the 
conditional variables might be the binding constraints that are on the edge of normal 
operational bound thereby cannot freely adjust.  

2.2. Screen vital few causes. Prior to final selection of VFCs, the critical candidates are 
preliminarily screened based on causal analysis. The potential causes might be supposed 
to have cause and effect relationship within them. We connect CTQ and potential causes 
according to their causal relationship such that an arrow is linked from one cause to its 
origin for all cause as shown in Figure 1. It is called “causal line” that a series of potential 
causes linked by from the CTQ to a final node (a cause). For example, there are 4 causal 
lines such as C1-C2, C1-C3-C4, C5-C6-C7, and C5-C8-C9 in Figure 1. Among them, the 
improvable causal lines that do not include any binding constraint are selected because 
binding constraint prevents intended implementation. After all, the nearest operational 
variable is preliminarily screened as critical candidate of VFC, for example, C2 and C3 in 
Figure 1. Other operational variables, which are in the same line, are usually used as a 
manipulated variable to control the nearest operational variable.  

Final VFCs are selected based on statistical hypothesis test of correlation between the 
CTQ and the pre-screened VFC. The null hypothesis is eq. 4 and the test statistic is 
calculated by eq. 5. The null hypothesis is rejected when test statistic is in the critical 

region, )2;2/(|| −> ntT α  with level of significance, α . 
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where, ρ  and r  is correlation coefficient and sample correlation coefficient. Pre-



 

screened VFCs that have statistically significant correlation with the CTQ are finally 
selected as VFCs.  
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Figure 1. Relations diagram which represent causal relationship among the CTQ and the 
potential causes. 
 
3. Case Study  

3.1. Process Description. Purified terephthalic acid (PTA) is a monomer used to 
manufacture polymer such as polyethylene terephthalate (PET) and polyester which then 
is formed into films, textiles, bottles, and plastic molds. Since the demand for PTA has 
been growing steadily and the market is large, the manufacturing process is receiving 
increased attention. Several types of commercial processes each licensed by Amoco, 
Estman-Kodak, or Mitsubishi are being operated to manufacture PTA in the world10. 
Process flow diagram of this large-scale process consists of the major 6 sub-processes: 
oxidation, centrifuging, digestion, filtering and drying, catalyst purification, and solvent 
separation. In these sub-processes, there are about 40 equipments and about 3000 
variables.  

3.2. Problem Define. From customer surveys and market analysis, it is known that the 
4-carboxybenzaldehyde (4-CBA) concentration contained in PTA product is the main 
quality that degrade quality of polymer product made from PTA product. In a TPA 
manufacturing process, PX is partially oxidized with air to PTA, and the 4-CBA is inevitably 
formed as an undesirable impurity during the oxidations. Since a great quantity of the 4-
CBA cause unstable polymerization in down stream, the formation of the 4-CBA should be 
within the desired value in the operating range of interest so that quality of polymer can be 
maintained uniformly during a certain period of time. The target value of the 4-CBA 
concentration is 150 ppm and the target performance of the 4-CBA concentration has to be 
at least 3.5 sigma. The performance of the 4-CBA concentration in PTA is calculated using 
the historical 4-CBA concentration data during 1 month before implementation. The 
average of the 4-CBA concentration is about 155 ppm and its performance is 2.0 sigma. 
We can know that the average is quite larger than the target and its performance is much 
worse than the target. Quality of polymer product has degraded due to the poor 



 

performance of the 4-CBA concentration and dissatisfaction of customers has grown about 
that gradually. Therefore our goal specification is to improve the 4-CBA up to the target 
performance and to maintain improved 4-CBA, consistently. 

3.3. Identify potential causes of variation. Oxidizer (OXD), digester (DIG), and 
centrifuge (CF) are selected as major processing systems from brainstorming. The 4-CBA 
is formed during the reactions in oxidizer and digester and then it is reduced throughout 
separators such as centrifuge and filter. Therefore, the 4-CBA has strong relationship with 
3 selected processing systems. The questionnaire has been done with total fourteen 
operators and engineers. HOQ assigns a total of 88 candidates within the major 
processing systems for the related score, respectively. Among them, a total of 21 
candidates are selected as the possible sources which highly influence on the 4-CBA. 
Finally, a total of 25 potential causes for the variation of the 4-CBA are identified by 
specifying the selected candidates. They are classified into operational variables, 
conditional variables, and binding constraints.  

3.4. Screen vital few causes. A total of 5 VFCs are preliminarily screened based on 
causal analysis. In order to see the gradual causality, the diagram has been focused in two 
kinds of effect, 4-CBA in CTA and 4-CBA in PTA. The causes of the significant amount of 
4-CBA generated during oxidation are related to the 4-CBA in CTA. The other causes of 
following changes of the 4-CBA arising from separation and second oxidation are related 
to the 4-CBA in PTA. There are 11 lines, but only 6 lines do not be affected by biding 
constraints. We preliminarily select the operational variable located most close to the 
corresponding 4-CBA as VFC for each line. Catalyst into oxidizer is VFC for two lines. The 
pre-screened VFCs are catalyst into oxidizer, impurity into oxidizer, oxidizer temperature, 
catalyst into digester, and air into digester.  

A total of 4 VFCs are finally screened based on statistical hypothesis test for correlation 
between the 4-CBA in PTA and the pre-screened VFCs. The data matrices are collected 
with the historical data measured during the last 1 month operation for the 11 process 
variables of the pre-screened VFCs and 1 quality variable of the 4-CBA. The data matrix is 
rearranged to resolve the problem not only that the quality variables are measured much 
less frequently than the process variables but also that each equipment have different time 
delay from resident time. And then statistical outliers that might be caused by 
measurement errors or abnormal operations were removed from the data set on the basis 

of principal component analysis12. The critical region, )304;025.0(t  of the hypothesis test is 

1.96 when significance level, α  is 0.05 and the number of observations, n  is 306. The 
final VFCs are catalyst into oxidizer, oxidizer temperature, catalyst into digester, and air 
into digester. They have the variables such as Br, Co, Mn and Ir concentration into oxidizer, 
oxidizer temperature, Br, Co and Mn concentration into digester, and air flowrate. 
 



 

4. Validation  
In order to validate the influence of identified VFCs upon the 4-CBA in PTA, a 

stabilization simulation of the PLS model for the 4-CBA in PTA is used to avoid the risk of 
real plant test. The variation in the 4-CBA is obtained at the assumed scenario in which the 
VFCs are respectively stabilized such that the standard deviations of these are halved. 
The PLS model is build with the operational variables nearest to the 4-CBA in all lines and 
it has explained variance of 70%. The inputs of the model are catalyst concentration into 
oxidizer, impurity, PX feed, air flowrate, oxidizer temperature, catalyst concentration into 
digester, CTA feed, and air flowrate under the assumptions that these variables can be 
independently and freely adjustable. Then, the effect of the stabilization of each VFC can 
be roughly estimated by comparing the variation of the 4-CBA before and after stabilizing 
the VFC. The standard deviation of the 4-CBA is decreases after the stabilization of each 
VFC. The reduction of variation is expected to greatly improve the sigma level of the 4-
CBA from 2.0 to 3.7. Therefore, it is confirmed that all the identified VFCs significantly 
affect on the 4-CBA. Note that this simulation approach gives an useful appraisal for the 
stabilization of the VFCs even though the estimated variations reduced by the stabilization 
may differ from the actual values since the simulation results are obtained from the PLS 
models in which considerable amounts of the variations in product quality are treated as 
noises.  
 
5. Conclusions  

To consistently guarantee product quality regardless of various variations and 
disturbances, it is important to find out vital few causes that make major impact on the 
quality variable. Identification of these VFCs allows us to focus our efforts on their 
contributions to the variations in quality. However previous process improvement 
strategies are limited to just provide usable tools and simple heuristics to identify VFCs, 
they require significant time of analysis when applied to a large-scale continuous chemical 
process which includes complex causal relationships due to recycle, buffer, control system 
and time delay. On the other hand, the conventional variable selection methods are 
impossible to identify the reasons of the observed correlation, thereby we can not 
guarantee accuracy of results. A systematic decision procedure which helps us identified 
VFCs of variation in an industrial large-scale chemical process is proposed. It’s stepwise 
zooming decision allows us to greatly reduce analysis time since the focus is 
systematically shifted to the significant factors for variation. At the first step, the potential 
causes of variation are systematically determined using house of quality (HOQ) based on 
empirical qualitative data. At the second step, accurate VFCs are screened using a causal 
analysis based on technical information as well as a correlation analysis based on a 
statistical hypothesis test. The systematic decision procedure has been successfully 
applied to PTA process to discover VFCs of quality variation. Three vital causes to CTQ 



 

are systematically identified and the accuracy of identification has been statistically 
validated. We believe the proposed methodology can be widely applied to many large-
scale chemical processes to identify vital few variables for CTQ variable. 
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