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1. Introduction 
Online estimation of parameters is significant for control and monitoring of many chemical 

engineering processes. Accurate estimation of process parameters requires measurements, that 
ensure observability and a good response of parameter estimates. Therefore, it is highly desirable to 
place the sensors optimally for estimating process parameters. The problem of sensor placement in 
chemical processes is aggravated by the fact that most of processes are nonlinear in nature and 
process disturbances may cause large changes in the parameters. 
 

Most of the available optimality criteria for sensor location for parameter estimation are 
based on scalar measures of the Fisher information matrix that require computation of a parameter-
output sensitivity matrix [4, 6, 7]. In another approach, Li et al. [3] employ principal component 
analysis on a parameter-output sensitivity matrix in order to compute the best set of parameters that 
can be estimated for a given measurement locations. All of these techniques require computation of 
parametric-output sensitivity coefficients that are based on local sensitivity analysis. Therefore, the 
results obtained by these methods may sometimes be only suitable for small changes in the 
parameters [8]. 
 

This paper presents a new approach of sensor placement for parameter estimation for 
linear as well as nonlinear systems. The parameters to be estimated are viewed as additional state 
variables and observability analysis is performed on the augmented system without resorting to 
linearization. This is achieved by making use of observability covariance matrices for the observability 
analysis, since the covariance matrices form an extension to the gramians of a linear system. Unlike 
linear gramians or empirical gramians which require asymptotic stability of the operating region 
around the equilibrium point, it is sufficient for the computation of the covariance matrices if the 
system is stable over the investigated operating conditions [2]. This property is essential for sensor 
location via observability analysis for the augmented system, because the augmented states are not 
asymptotically stable. Additionally, the covariance matrices capture some of the nonlinear behavior of 
the system over the region of operation and can be easily computed for nonlinear systems of high 
complexity and significant size. The information from this investigation is combined with observability 
measures that have been previously proposed in the literature. This approach offers the advantage 



over other methods in that it is directly applicable to nonlinear systems without resorting to 
linearization of the model and hence, can capture part of the nonlinear behavior of the system for 
large perturbations in the process parameters. The proposed method has been applied to a binary 
distillation column and fixed bed reactor model. The results have been compared to those obtained 
by linearizing the model. It is shown that the optimal sensor locations determined by the presented 
procedure are in line with predictions from physical insight into the model. This is in stark contrast to 
methods relying on linearization which have been applied to these models and return locations which 
are non-optimal for the nonlinear system under study. 
 
2. Sensor location procedure 
 

In order to compute the optimal sensor location for parameter estimation, the nonlinear 
system given by (1) is augmented with equations of parameter )( p to be estimated. 
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The parameters are assumed to be constant or slow varying and therefore they can be described by 

0=
•
p . The parameter equations are added to system described by (1) and the augmented nonlinear 
system is given by: 
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To compute optimal measurements, observability analysis is performed on the augmented system 
described by (2). If the system is linearized, then it will have as many zero eigenvalues as there are 
unknown parameters. Hence, linear gramians )( ,linearOW  cannot be used for the observability analysis 
of the linearized system as ∞→linearOW ,  for marginally stable system. Similarly, linear gramians 
cannot be used for observability analysis if the system is linear. However, observability covariance 
matrices do not have this restriction.  
 

The observability covariance matrix [3] is defined as: 
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system corresponding to the initial condition ssilm xeTcx +=)0( , and ssy is the steady state output of the 
system. The matrix  T  in the above definition is given by: 
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and nsr ,,  represent the number of matrices for the perturbation directions, the number of different 
perturbation sizes for each direction, and the number of states of the system respectively. 
 

These covariance matrices can be used for the observability analysis of augmented linear 
or linearized system and they reduce to the linear observability gramian if the linear system is 
asymptotically stable.  The observability covariance matrix captures the nonlinear behavior of the 
system over the operating region and hence it can be used for observability analysis of the nonlinear 
system. 



 
The computed observability covariance matrix of the augmented system can be 

decomposed  as follows:                                        
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where the submatrix nnOW ,  represents the observability covariance matrix of the system (2) before 
augmentation with the parameters as additional states,  ppOW ,  represents the variance-covariance of 
the parameters, and npOW , and pnOW ,  represent the covariances of the state variables and parameters. 
If the rank of the augmented observability covariance matrix (4) is equal to the sum of the number of 
states and parameters then the augmented system is observable and the parameters can be 
estimated. The degree of observability of the set of parameters is determined by the submatrix ppOW ,  
since it represents the covariance matrix of the parameters. The diagonal elements of this matrix 
represent the variance that changes in the parameters cause in the outputs and the other entries are 
an indicator for the degree of interaction between the parameters. Hence, measures based on the 
sub-matrix ppOW ,  can be used to determine the best sensor location for parameter estimation.                 

)( , ppOWmeasure=ω  (5) 
Measures like trace and norm of the observability covariance matrix can be used to estimate the 
degree of observability of the parameters. For the case where only a single process parameter needs 
to be estimated, the ppOW ,  matrix reduces to a scalar which needs to be maximized.  
 
3. Results 

The new method for sensor location has been applied to two examples. In the first example 
a model of binary distillation column [1] is considered and the optimal location for estimating the 
relative volatility is computed. In the second example an infinite-dimensional model of a fixed bed 
reactor [5] is investigated. 
 
Distillation Column 
 

In order to compute optimal locations for estimating relative volatility in column, the 
observability covariance matrix is computed for all possible measurements, i.e. measuring each of the 
32 states individually. Observability analysis is performed for each of the computed covariance 
matrices. The submatrix ppOW ,  is extracted from the observability matrix. As only one parameter is 
determined ppOW ,  reduces to a scalar that is maximized over the entire set of possible measurement 
to obtain the best sensor location.  
 

While analyzing the results obtained for sensor location for the column (Figure 1), it can be 
seen that the best location for parameter estimation is 8th tray. In order to corroborate these findings, 
the performance of a Kalman filter is compared for the optimal and a non-optimal measurement. The 
results indicate faster convergence of the Kalman filter for parameter estimation when the 
measurements are placed at the optimum location. 



 
Figure 1. Values of the measure for placing a sensor on the distillation column for estimating relative 
volatility. 
  
 
Fixed-bed reactor 

 
In this example, the optimal location for estimating the feed inlet temperature is computed. 

Similar analyses can be carried out for locating the best measurement in a reactor for estimating 
other parameters like the heat transfer coefficient or the activation energy. The optimal measurement 
location is computed for the nonlinear reactor model as well for a linearized version of nonlinear 
model for 5% uncertainty in the parameter. The optimal location obtained from the nonlinear model is 
at 0.2 m from the rector inlet while for the linearized model it is almost at the inlet of the reactor 
(Figure 2). If the nonlinear reactor model is simulated for 5% uncertainty in the process parameter, it 
can be observed that in fact the location provided by nonlinear model is physically meaningful as the 
sensor location by nonlinear model is within the ranges of hotspot locations for 5% change in the 
process parameter. The results returned for the linear model, on the other hand, do not correspond to 
a physically meaningful location. 



 
Figure 2. Values of the measure for placing a temperature sensor along the length of the reactor for 
parameter estimation.  
 
 
4. Conclusions 
 

This paper presents a new technique for estimating sensor locations for parameter 
estimation for linear as well as nonlinear systems. This method has the advantage that it can be 
applied to nonlinear systems without resorting to linearization and the results are valid for large 
perturbations in the process parameters. 
 

This methodology has been applied to two examples, i.e. a distillation column and a fixed 
bed reactor. The computed locations are in line with predictions from physical insight into the models. 
Additionally, parameter estimation via a Kalman filter has been performed and it was determined that 
the estimation works better if the measurement is placed at the computed optimal location.  
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