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Abstract: In this paper, we outline a self-organizing map (SOM) based approach to  
monitor process transitions. The framework integrates SOM with clustering and 
sequence comparison methods for plant wide monitoring and fault diagnosis. 
Process abnormality is detected through cluster analysis while syntactic pattern 
recognition technique and profile sequence comparison techniques render data 
based fault diagnosis and machine learning possible. Furthermore, the proposed 
method also inherits the powerful visualization facility of SOM. Extensive testing 
on the operations of a lab-scale distillation column illustrates the method’s efficacy.   
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1. INTRODUCTION 
 
Transitions are quite common in the process industries. Transitions occur during startup, shutdown, 
feedstock changes, product slate changes, etc in chemical processes. Transitions commonly entail 
large changes in the plant operating conditions, thus hindering the effective operations of current day 
control systems. Similarly, most of the high-level automation applications are effective only during 
steady states. Plant operators therefore perform transitions manually following predefined standard 
operating procedures (SOP), which clearly state the sequence of actions that need to be taken, e.g. 
open or close valves, activate or deactivate equipments, reconfigure controllers, etc. Owing to the 
lack of effective automation and the high cognitive workload for operators, the occurrence of human 
errors during transitions is more common. Surveys in the US, Canada, UK, Europe, and Japan reveal 
that human errors, especially during transitions, are the leading cause of abnormal situations (Nimmo, 
1995). With the growing scale of chemical plants and the complexity and agility of process 
operations necessitated by market conditions, monitoring of transitions remains a challenging 
problem. In this paper, we outline a self-organizing map (SOM) based approach to perform plant-
wide monitoring and fault diagnosis. The method inherits the powerful visualization facility of SOM 
and enables multivariate monitoring on a two-dimensional map. The integration with clustering and 
sequence alignment technique also render automated data-based process monitoring and fault 
diagnosis possible.  
 

The organization of this paper is as follows: Section 2 presents an introduction to SOM and 
some of its applications in the process industries. Section 3 describes the SOM methodology for 
monitoring transitions while Section 4 presents a case study from the startup of a distillation column.  
 



 

 
2. THE SELF-ORGANIZING MAP 

 
The self organizing map was first proposed by Kohonen in 1981 as a visualization tool, but has since 
become one of the most popular neural network architectures. SOM belongs to the unsupervised 
learning type of neural networks and is capable of projecting high-dimensional input onto a lower, 
usually two-dimensional grid. SOM employs nonparametric regression and involves the fitting of 
discrete, ordered reference vectors to the distribution of input feature vectors. A finite number of 
reference vectors are adaptively placed in the input signal space to approximate input signals. Self-
organization means that the net orients and adaptively assumes a form by which it best describes the 
input vectors in an ordered, structured fashion (Kohonen, 1993). Consider a n-dimensional input 
vector, x , given by 

{ }nxxxxx ,...,,, 321= ………………………………………..(1) 
and im  a parametric real vector in the same space 

{ }ni mmmmm ,...,,, 321= ……………………………………..(2) 
Each im  also represents a node on a output grid (usually hexagonal). The map unit im  which gives 
the smallest Euclidean distance with x  is defined as the best-matching unit (BMU), represented here 
as  

( )||||minarg ii
BMU mxm −= …………………………………(3) 

During the training of the SOM, the reference vector of the BMU, im  as well as those of its 
topological neighbors is updated by moving it towards the training sample x . The SOM learning rule 
at iteration t is given by  

)]()()[()()()1( tmtxthttmtm i
BMU
iii −+=+ α ……………………………..(4) 

where )(thBMU
i  is the Gaussian neighborhood function given by 
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and )(tα is the learning rate factor and r is the radius of the neighborhood function. It is necessary 
that as training proceeds BMU

ih reduces to zero to guarantee convergence. A large value of α is 
employed initially and is usually decreased monotonically with t (Kohonen, 2000). During the 
training phase, SOM will fold onto the pattern formed by the training data and neighboring units are 
pulled nearer together because of the neighborhood relation. Thus neighboring units are, in a sense, 
more similar to each other. The visualization of SOM is usually done through a unified distance 
matrix (U-matrix) (Ultsch, 1990), where the distances of each map unit to its neighbors are 
calculated and displayed through gray or color-scales. An example of a U-matrix is given in Figure 1. 
Borders of dark color in the U-matrix can be interpreted as regions of high distances separating 
clusters of low distances, indicated by map units of lighter color. Interested readers are referred to 
Kohonen (2000) for a more detailed description of SOM. 
 

SOM implements an ordered dimensionality reduction through the mapping of the input 
feature vectors while preserving the most crucial topological and metric relationships of the original 
data, by producing a similarity map of the input feature vectors. Some of the previous applications of 
SOM are presented next. Deventer et al. (1996) demonstrated how disturbances in a froth flotation 
plant can be visualized with SOM. They track changes in operating conditions through an on-line 
computer system that utilizes features extracted from froth images and visualize the degree of 
dispersion of the various input feature vectors through SOM. Chan et al. (2001) presented a 
constrained Kohonen networks to overcome the problem of monitoring redundant sensors by 
constraining the weight vectors in the parity space. Srinivasan and Gopal (2002) showed how SOM 



 

can be used to extract operating information from operating data of a fluidized catalytic cracking unit. 
Jämsä-Jounela et al. (2003) presented a SOM based fault diagnosis system for a smelter based on 
heuristic rules. SOM was used to determine the coefficient for oxygen enrichment and detection of 
aggregations in various parts of the plant. Abonyi et al. (2003) applied SOM to a polyethylene 
process for product quality estimation. They developed multiple local linear models for the process 
through piecewise linear regression with SOM. 
 
 

3. PROPOSED METHODOLOGY 
 
Process transitions commonly entail large changes in the plant operating conditions. Also, the state 
of the process dynamically evolves with time. This is difficult to track as the process can encompass 
a wide region in the self-organizing map. In our approach, process monitoring is performed by 
observing the time series trajectory of process operations on the SOM. The trajectory produced is 
time independent as it depends only on the states of the process. Process dwell time during 
transitions caused by run-to-run deviations is thus taken care of implicitly. Occurrence of a process 
fault can be observed through deviations from normal operating trajectory and root causes are 
identified by analyzing the component planes (Ng and Srinivasan, 2004a). However, this approach 
involves intensive human involvement in interpreting the process trajectory and diagnosing root 
cause. As an alternative, a fault database can be used to automate fault diagnosis based on syntactic 
pattern recognition. Monitoring statistics can also be developed to provide variable-wise residuals 
during an abnormal event.  
 

Two stages of development can be differentiated. The first stage involves the construction of 
the SOM reference model and creation of a fault database based on the abstraction of process data 
into state sequence, as shown in Figure 1. This stage comprises a series of training and model 
updating processes, and the decision on the tuning parameters will also be decided. As can be seen in 
Figure 1, historical data from both normal and abnormal regions are first extracted from plant 
historians and projected on SOM. Next, the constructed SOM is clustered through clustering 
algorithm to identify regions of high similarity. Reference dataset, akin to the golden run of batch 
processes, are then SOM projected to update the reference model. The constructed model will later 
be used to monitor for discrepancies in online process measurements. The hits observed should be 
consistent with the SOM model when the process is normal. Any abnormal event in plant will cause 
abnormal hit-cluster sequence development which is inconsistent with the reference model. In this 
work, faults are isolated by fault database search and monitoring statistics. The steps taken to build 
the SOM model and fault database is presented in Section 3.1, while Section 3.2 describes the steps 
for online deployment.  
 
 

3.1. DEVELOPMENT OF ESSOM AND FAULT DATABASE 
 
The proposed off-line training algorithm is summarized in Figure 2. The historical dataset are first 
denoised and normalized before being projected to SOM. The fully trained SOM is then clustered 
through k-means clustering into a predefined set of clusters. The reference model - ESSOM 
(Enhanced Structure Self-Organizing Map), is developed after the clustering of SOM. ESSOM is 
composed of groups of cluster objects, which store the characteristics of normal operations eg: 
predecessor and successor of a cluster, process dwell time, etc. The training of ESSOM is done by 
recursive projection of different sets of reference data, or normal templates to SOM. The fully 
trained ESSOM, is then used as a model to detect process abnormality through state-cluster 
mismatch during online process monitoring. A fault database is also constructed based on the 



 

clustering results to isolate known process faults based on syntactic pattern recognition. The details 
of the construction of ESSOM and the fault database are elucidated next:  
 

The raw sensor measurements are first de-noised through a finite impulse response (FIR) 
filter (DSP committee, 1979) to filter out high frequency noise before each variable is variance 
normalized. The normalized dataset, x , is then projected to a SOM. Projecting the training data 
onto the SOM may provide a means to visualize the process operating trajectory. Post-projection 
analysis is essential to automate monitoring. Towards that end, the SOM is further clustered into 
predefined number of clusters to identify regions of high similarity. We use k-means (Sneath and 
Sokal, 1973) to partition SOM based on reference vectors of the SOM units. The number of 
partitions, K will affect the sensitivity and selectivity of the system in detecting abnormal events and 
isolating the root cause, as higher number of cluster defines more regions on SOM to better represent 
the characteristic of the underlying process. The user can adjust K to the desired level of 
sensitiveness. While too large a K will subject the system to more fault positive events, too few 
clusters will subject the system to more fault negatives. The k-means is executed for multiple 
replicates and the run which yields the lowest total square-error, ε , is selected. It is important that 
the number of replicates for k-means is high so as an optimum partition is obtained. The clustered 
regions can be used to track process trajectories across SOM. Abnormal situations are detected 
through cluster analysis by analyzing the hits clusters evolution as compared to a normal reference 
template. 
 

The construction of ESSOM is based on the SOM clusters formed from the k-means 
clustering. A cluster object, c that is the primary entity of ESSOM is created for each cluster on SOM 
to identify features of a normal run. A total number of K cluster objects are initialized, with eight 
attributes each, namely, name, centroid, activation status, incoming cluster, incoming time, outgoing 
cluster, outgoing time and hits distribution. Sets of reference datasets, Rr , akin to the golden runs of 
batch processes, are recursively projected to SOM to update ESSOM. The constructed ESSOM is 
general enough to be used for both transient and steady–state monitoring. The construction of a fault 
database for diagnosing fault is described next. The self-organizing map, after being clustered into K 
states by k-means, provides a means for syntactic pattern recognition as structural information can be 
extracted as state-sequence for further assessment. The feature representation of the syntactic pattern 
recognition technique is based on the hierarchical abstraction of the process features from the self-
organizing map, shown graphically in Figure 1. Data from faulty operation are first decomposed 
hierarchically into simpler patterns, with the hits on SOM forming the primitive language to 
represent basic changes in the response of the dataset. The extracted hits of process trajectory are 
decomposed to state sequences, and the state sequences are further refined into fault signatures 
which will be used online for fault identification. The fault signatures created form the primary entity 
of a fault morpheme, defined here as a fault information spreadsheet that stores the information of a 
fault in the fault database. A fault morpheme is generated with its attributes reflecting the 
characteristics of the fault it represents. A fault morpheme has several attributes, eg: fault-signature, 
dwell-time, and recovery actions. If an abnormal situation is observed during operation, the online 
signature will be matched with the signatures of the fault morphemes in the fault database through 
similarity search. If successful matches are observed, the fault morphemes together with their 
rectification strategies will be extracted and presented to plant personnel for implementation.  
 
 

3.2. ON-LINE MONITORING AND FAULT DIAGNOSIS 
 
The ESSOM and fault database developed in the previous phase can be deployed for online fault 
detection and diagnosis. The process of detecting faults is based on monitoring the discrepancy 
between online state-sequence developments with the reference model ESSOM. Fault diagnosis 



 

algorithms are triggered upon detection of an abnormal event. Two diagnostic algorithms have been 
implemented in this work to help plant personnel to identify the root cause of a fault: a fault database 
search methodology based on syntactic pattern recognition, and variable-wise residuals monitoring 
based on profile comparison. One significant issue in transition diagnosis is the alignment of 
temporal patterns since they can be of different lengths due to operating variations. Therefore, fault 
signatures and process profiles have to be synchronized before they are compared. We synchronize 
temporal patterns using sequence alignment. 
 

The algorithm for on-line fault diagnosis is shown in Figure 3. During online monitoring, 
each process variable, designated here as ny , is first normalized using the same linear transformation 
that was used during the offline training phase to nx , before being projected to the trained SOM. The 
BMU of nx , jm  is then identified and its corresponding state identified. The novelty index and the 
cluster sequence are constantly monitored for deviation. A novel fault is said to have occurred if the 
novelty index, ∑ =

−= N

n
BMU

njn mx
1

2||η  crosses a predetermined threshold. The novelty index is a 
direct measure of the quantization error between the weight vectors of the BMU and the 
corresponding sensors measurement. Abnormal trajectories are detected based on cluster analysis. 
Whenever there is a change in state-cluster, S, in the monitored trajectory from S(t-1) to S(t), where 
S(t) ≠ S(t-1), sequence consistency is checked with the reference model, )(tcESSOM . If there is a 
violation in the cluster progression, an alarm will be flagged. The diagnostic algorithms are also 
triggered to provide necessary guidance to operators.  
 

Two diagnostic methods have been implemented in this work to isolate abnormal events, 
namely: fault database syntactic pattern recognition, and profile comparison to quantify process 
variations. The syntactic pattern recognition module contains procedures to perform database search 
and retrieve solutions. There have been numerous approaches proposed to classify patterns based on 
syntactic pattern recognition. Throughout this work, a parser based syntactic pattern recognition 
approach has been adopted to perform fault classification (Schalkoff, 1992). The parsing of 
signatures syntax is automated with the sequence alignment approach. When an abnormal situation is 
detected, the vector storing the cluster progression, termed as the online signature of the process, is 
sent for pattern matching with the fault morphemes in the fault database. Three indexes are defined 
for the purpose of retrieving entries from the database, namely similarity degree, fault maturity 
degree, and specificity degree.  

 

Similarity degree, Π , is given by %100x
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Fault maturity degree,  Γ , is given by %100×=Γ
morpheme fault of length

entities  signaturematched of sum . 

The similarity degree and specificity degree provide a means to extract solutions from a fault 
database. The similarity degree measures the similarity between the observed fault and the entries in 
database. The search is said to be successful if it retrieves only one result and is being able to identify 
the root cause accurately. On the other hand, the fault maturity degree tells us how mature the fault is 
in the current system. Fault maturity degree tends to increase over time as the characteristics, or 
behavior of a fault has become more apparent. There are two desired characteristics of a sequence 
alignment parser. First, the sequences are compared in an optimal manner as sequence alignment 
produced optimally aligned sequences, which improves the proposed methods’ accuracy over 
conventional parser, which are often difficult to built and hard to update for large system. Secondly, 



 

sequence alignment allows automatic correction of primitives. Noise or outliers of process which 
produces erroneous primitives are inherently taken care of during the alignment process by the 
introduction of gaps to isolate the erroneous primitives.  
 

Monitoring statistic has also been formulated to generate variable-wise residuals upon 
detection of abnormal event. A statistical scoring scheme, D-statistic, Θ , so called because of its 
Dynamic nature, is defined here to help plant personnel to verify the database search results and 
handle novel faults. The D-statistic serves as a monitoring chart for plant personnel to monitor 
process variables, and produce variable-wise residuals during an abnormal event. The residuals 
generated are important for two reasons. First, it gives a clear overview on the deviations of process 
variables and helps plant personnel in deducing the root cause during an abnormal situation; and 
secondly, it supplements causal model such as signed diagraphs and render their usability during 
process transitions. The optimal reference operating condition, optm as compared to the current state 

of process, jx  is used to compute D-statistic, ∑ −=Θ
=
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n

opt
njn mx

N 1
||1 . Θ  gives a direct measurement 

of the severity of the underlying abnormal event. A continuous increment in Θ  indicates that the 
fault is getting more severe and immediate attention is required and similarly vice versa. While Θ  is 
an average total error measurements between optm  and jx , the variables residuals is of more 
important to the plant operators, since it contains process variable-wise information for causal 
analysis. The variables residuals will be displayed through percentage deviation, δ , defined as 
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4. A DISTILLATION COLUMN CASE STUDY 
 

The proposed framework is tested on a lab-scale distillation unit as shown in Figure 4. The 
distillation column is of 2 meters height and 20cm width and has 10 trays, where the feed enters at 
tray 4. The system is well integrated with a control console and data acquisition system. 19 variables 
comprising of all tray temperatures, reboiler and condenser temperature, reflux ratio, top and bottom 
column temperatures, feed pump power, reboiler heat duty, and cooling water inlet and outlet 
temperatures, are measured at 10-second intervals. Cold startup of the distillation column with 
ethanol-water 30% v/v mixture is performed following the standard operating procedure (SOP), 
shown in Table 1. The feed passes through a heat exchanger before being fed to the column. The 
startup normally takes two hours and different faults such as sensor fault, failure to open pump, too 
high a reflux ratio etc., can be introduced at different states of operation.  
 
Experiments are first carried out separately to populate the plant historian. The faulty dataset, 
together with the normal reference template, are then used to train the SOM. The trained SOM for a 
normal startup of the unit, as shown in Figure 5, consists of 30 x 16 map units. The trained SOM was 
further clustered using k-means (K= 40). The k-means was executed for 2000 replicates, by using 
squared Euclidean distance for total square error computation. The ESSOM created then contains 40 
cluster objects; their attributes were further updated through projection of a normal template. As can 
be seen in Figure 5, the startup of the unit can be easily visualized from the trained SOM. The startup 
process has been observed to follow a trajectory on the U-matrix by evolving from one cluster to 
another, these series of cluster evolutions stored the characteristics or signatures of a run. The startup 
process begins at cluster 36, evolves through a series of intermediate clusters before settling at 
cluster 21 when steady state is attained at t=3890s. Similarly, a fault database was also constructed 
from the faulty datasets in the plant historian for diagnosing the root cause of a fault. 



 

 
Scenario 1: DST01- Reboiler power fault 
Online data was projected onto the SOM and the cluster hits identified. Figure 6 shows the trajectory 
during fault DST01. The dark solid line corresponds to the faulty trajectory and the light solid line is 
the reference trajectory from the normal run. The process signals for DST01 are shown in Figure 7, 
where the solid lines represent the signals for the faulty operation while the dotted lines are process 
signals of the reference template. The process fault was introduced at 20s, resulting in long heating 
time and unsuccessful startup when the feed pump was activated at step 7 of SOP. The problem was 
successfully detected by ESSOM at time 100s when the cluster deviated from cluster 36 to 23, with 
plant operator being informed before the fault upset the whole startup process. The D-statistic 
contribution charts at time of fault detection are shown in Figure 8. From Figure 8, one can easily 
recognize that the reboiler power is the root cause of the fault; the proposed method thus enables 
early corrective actions to be taken to alleviate the abnormal event. Failure to rectify the above 
problem would result in further deviation from the normal operating conditions. Direct signals 
comparison or signals interpolation would generate erroneous results eg, direct generation of 
residuals at Tray 4 temperature at time 2800s would suggest a high residual for process variable T4 
since they span through different state of the process; the reference template is in the boiling phase 
while the process is still in the reboiler heating phase. The D-statistic formulated is thus capable of 
producing optimal results by locating the exact location in the reference template and providing 
accurate variables residuals to help plant personnel in diagnosing the root cause. The characteristic of 
the faulty run, or its signature at time of fault detection, was also sent for database matching through 
syntactic pattern recognition. Plant personnel can then verify the suggested fault rectification strategy 
extracted by the database search algorithm by confirming it with the D-statistic contribution charts 
before they are implemented in the process. Failure in rectifying this fault will result in unsuccessful 
column startup in process plant and introduce unnecessary delay to both upstream and downstream 
processing units. 
 
 

5. CONCLUSIONS 
 
This paper presents the methodology in developing SOM for process fault diagnosis by incorporating 
clustering and sequence alignment technique. A novel syntactic pattern recognition based 
methodology has been proposed for classifying known process faults based on database search. The 
pattern recognition technique endows the proposed method with learning property to classify new 
process faults when such dataset become available. A statistical monitoring scheme based on 
sequence alignment technique has also been introduced to monitor the severity of process fault, and 
to generate variables residuals during abnormal events to facilitate plant wide fault diagnosis. The 
application of the above methods to a distillation column startup shows the method effectiveness in 
detecting and classifying process faults. The proposed method offers several advantages over the 
other monitoring techniques. It accounts the multivariate nature of chemical processes and is able to 
visualize high dimensional data, making it superior to most of the currently available monitoring 
techniques. The proposed technique is much faster than conventional signals comparison methods. In 
addition, the sequence comparison method is also less computational demanding, and has found to be 
able to supplement external causal models, e.g., signed diagraphs or observers, through the D-
statistic contribution charts generated. The method is also relatively easy to scale up and can be 
applied to multiple platforms with minor changes in algorithms. Our group hopes that the above 
developed method can be a good supplement to the currently available monitoring techniques. Future 
work is oriented towards integrating SOM model with heterogeneous FDI models for collaborative 
decision support during process operations (Ng and Srinivasan, 2004b).  
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TABLES AND FIGURES 
 

Table 1: Standard operating procedures (SOP) for startup  
 

Distillation column startup SOP 
1. Set all controllers to manual 
2. Fill reboiler with liquid bottom product 
3. Open reflux valve and operate the column on full reflux 
4. Establish cooling water flow to condenser 
5. Start the reboiler heating coil power 
6. Wait for all of the temperatures to stabilize 
7. Start feed pump 
8. Activate reflux control and set reflux ratio 
9. Open bottom valve to collect product 
10. Wait for all the temperatures to stabilize 
 
 

 
Figure 1: Abstraction of process data 
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Figure 2: Offline training algorithm 

 

 
Figure 3: On-line fault detection and diagnosis algorithm 

 
 



 

 
Figure 4: Schematic of the distillation unit set up 

 

 
Figure 5: Trajectory of normal startup of distillation unit as projected on SOM U-matrix 

 



 

 
Figure 6: Operating Trajectory of DST01 (Reboiler power low) 

 

 
Figure 7: Process signals for DST01 (x10s) 

 

 
Figure 8: D-statistic contribution chart at time 100s for DST01 
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