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Abstract 
Multi-stage multi-product batch plants with parallel units are quite common in the batch 
chemical industry. How to assign products to those units optimally have become formidable 
scheduling problems considering the large number of assignment possibilities. To find a 
better way to solve these tough problems, we turn to find a way by studying the simplified 
problems (scheduling of multi-stage multi-product batch plants with identical parallel units) 
first. Instead of deciding the product sequence on each unit, we focus on the sequence of 
products at the start time and end time of each stage. Each stage is considered as a ‘black 
box’ in which we care about which time and who will enter and leave these ‘black boxes’ 
and need not care about how these ‘black boxes’ perform. We develop MILP formulations 
based on this idea. Examples show that formulations with this idea have a great reduction 
in binary variables and non-zero elements compared to the slot-based formulations existing 
in the literature. Finally, we find one formulation within the three formulations developed by 
us performs best comparing with the formulations in the literature. 



 

Introduction 

Multi-stage multi-product batch plants with parallel units are quite common in the 
batch chemical industry. In such plants, scheduling of plant operations is a routine activity. 
Due to the many alternate ways in which products can be assigned to various units and 
produced in different sequences, the task of optimal scheduling is formidable. Not much 
attention has been paid to scheduling in plants with multiple stages, in spite of its industrial 
significance. There are two kinds of representation (discrete-time and continuous-time) for 
these scheduling problems in the literature. Because discrete-time formulations often 
involve large numbers of binary variables, it often makes problems hard to solve. We 
consider the continuous-time representation here. A continuous time MILP model has been 
developed by Pinto and Grossmann (1995) to solve short term scheduling problems. In 
their model, sequence-independent set-ups and no resource constraints except equipment 
were the major assumptions. The problem has been modeled through a continuous time 
representation that relies on the time-slot notion and the use of parallel time axis for units 
and tasks. To assign orders to the specific slots of units in the stages, tetra-index binary 
variables, i.e. (order, slot, unit, stage) are used. Although these scheduling problems could 
be formulated clearly with this model, often a large number of binary variables will be 
introduced for larger problems. Ku and Karimi (1988) presented an optimal MILP 
formulation for scheduling N products across an M-stage serial processing system with 
single unit per stage. They considered the process under a combination of the intermediate 
storage policy as a combination of the UIS, FIS and UIS policies. To reduce the number of 
binary variables in the formulation, they developed a heuristic strategy of assigning 
products to specific neighborhoods of a sequence. They used minimizing makespan as the 
objective function. Gupta and Karimi (2003) developed a new MILP formulation for the 
short-term scheduling in a multistage batch plant with non-identical parallel units. They 
used a set of tri-index variables (order, order and stage) to handle order-sequence 
dependencies explicitly. By using this formulation ， problems with both sequence-
dependent and unit-dependent setup times could be solved. Comparing to the formulations 
in the literature, their new formulation could use fewer constraints and give better objective 
value than the previous works in less computational times. Model of Pinto and Grossmann 
(1995) belongs to slot-based models. Models of Gupta & Karimi (2003) belong to 
sequence-based models. We have compared these methods and our result shows that the 
slot-based models perform better than sequence-based models. However, formulations 
existing in the literature often involve large number of binary variables and cannot solve 
large problems.  

To find a better way to solve these tough scheduling problems, we turn to find a way 
by studying the simplified problems first. Many multi-stage, multi-product non-continuous 
industrial plants use identical units in every stage. They are suitable for all the products and 
their processing rates are same. We choose these problems as the simplified problems. In 
this paper, we present three slot-based models to solve these simplified problems with UIS 
(Unlimited Intermediate Storage).  For problems with UIS, there is no limitation for storage 
between stages and a batch can be held in its processing unit temporarily after its 
completion. Our key idea is as follows. Instead of deciding the product sequence on each 
unit, we focus on the start sequence and the end sequence of products in each stage. Each 
stage is considered as a ‘black box’ in which we care about which time and who will enter 
and leave these ‘black boxes’ and need not care about how these ‘black boxes’ perform. In 
this way, the unit assignment is avoided and the problem is simplified. This idea leads to a 
great reduction in binary variables and non-zero elements in our models compared to the 
slot-based models existing in the literature.  We compare these models to model of Pinto 



 

and Grossmann (1995) and model of Gupta & Karimi (2003) and find the model, which 
performs best. Finally, this formulation can be extended to the general multi-stage multi-
product problems.     

Problem Description 

Figure 1 shows a schematic diagram of a multi-stage multi-product simplified batch 
process. 

The process comprises S  stages with J  parallel units ( j =1, ..., J ) and 
manufactures I  distinct product items ( i =1, ..., I ). The units within a stage are identical 
which means that they are suitable for all the products and the processing times of a 
product on them are same. All the product items should be processed by a unit in a specific 
stage. For the convenience of formulation, we assume that there are two parallel identical 
units in every stage. By slight amendment, we can get formulations for other multistage 
problems with parallel (more than two parallel identical units) units easily. We are going to 
extend our formulations to those problems later. Intermediate storage policy such as UIS 
(Unlimited Intermediate Storage) is going to be considered.   

 
 
Figure 1. Schematic diagram of multi-stage multi-product process simplified batch process 

(with two identical units in each stage) 

In addition to the above process features, we assume the following. 

Assumptions 
1. A unit cannot process more than one product at any time.  
2. Processing is non-preemptive. 
3. Processing units do not fail and processed batches are always satisfactory.  
4. Time zero denotes the start of the current scheduling period. 
5. Transition times are not considered.  
6. Batch sizes are fixed parameters. 

Each product is to be processed only once by exactly one unit of every stage it must 
go through.  

1 

2 

I 

orders 

1 

2 

Stage 1 

Interm
ediate storage 1

3

4

Stage 2

J-1 

J 

Stage 



 

There are different formulations to formulate any problem. For different intermediate 
storage polices, there are different formulations for the same problem. Here we are going to 
present three different formulations to solve these multi-stage multi-product simplified 
problems with the intermediate storage policy of UIS.   
 
Model Formulations 

Figure 2 shows the continuous-time representation in our models. In this time 
representation, we need consider the product sequence at start time and end time of each 
stage. The product sequence at start and end time of a specific stage is got by assigning 
the products to the start or end sequence slots the number of which is equal to the number 
of products. After the sequences have been decided, timing relationship among these slots 
can be got eventually.   

 
 

Figure 2. The continuous-time representation for the multi-stage multi-product simplified 
batch process 

 
Mathematical Formulations 

We construct three models based on the situation that there are two identical parallel 
units in each stage first. Later we will give the extension models, which are suitable for the 
general problems with multiple identical units in each stage besides two identical units.  

Model 1 

According to the above time representation, we develop the first model as following.  

Allocation constraints 

Binary variables iksYS  have been defined to assign product i  to slot k  at the start 
sequence for stage s . 

iksYS =
⎩
⎨
⎧

                                                                                             otherwise0
stagefor sequencestart  at theslottoassignedbeenhasorderif1 ski

 

Binary variables iksYE  have been defined to assign product i  to slot k  at the end 
sequence for stage s . 
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iksYE =
⎩
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                                                                                            otherwise0
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Allocation constraints 

Constraints (1) show that each slot in the start sequence in a stage should process 
one product. Constraints (2) show that product i  should start at a slot in the start sequence 
for a specific stage s  .   

1=∑
i

iksYS                                                             sk ∀∀ ,                                                    (1) 

1=∑
k

iksYS                                                             si ∀∀ ,                                                    (2) 

Similarly, constraints (3) show that each slot in the end sequence in a stage should 
process one product. Constraints (4) show that product i  should start at a slot in the end 
sequence for a specific stage s  .   

1=∑
i

iksYE                                                             sk ∀∀ ,                                                   (3) 

1=∑
k

iksYE                                                             si ∀∀ ,                                                    (4) 

Constraints (5) show that the product, which ends at slot 1−k  in the end sequence 
for stage s , must start at slot k  in the start sequence for stage 1−s  or those slots before it. 
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≥∑                                                  1,, >∀∀ ksi                                          (5) 

If product i  starts at slot k , it should end at slot 1−k  or the slots after it. Constraints 
(6) present this.  

iks
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Timing Constraints 

Constraints (7) and (8) represent the time of slot k  should be bigger than the time of 
slot 1−k  in the start sequence and the end sequence correspondingly.  

skks TSTS )1(11 −≥                                                            1, >∀ ks                                         (7) 

skks TETE )1(11 −≥                                                            1, >∀ ks                                        (8) 

These constraints (9) show that slot k  in the start sequence for stage s  is not 
permitted to start until slot 2−k  in the end sequence for stage s   has ended. By doing so, 
we have made sure that at most two products are processing in each stage so that 
assigning products to units are avoided.  



 

skks TETS )2(11 −≥                                                            2, >∀ ks                                       (9) 

Constraints (10) are the relationship of the start time of product i  and its end time in 
stage s . Similarly, constraints (11) are the relationship of the start time of product i  in stage 
s  and its end time in stage 1−s .  

∑∑ ≤+
k

iksis
k

iks TEPTS 22                                          is ∀∀ ,                                            (10) 

∑∑ ≤−
k

iks
k

sik TSTE 22 )1(                                               1, >∀ si                                       (11) 

By using constraints (12) and (13), we could linearize the nonlinear 
constraints iksksiks YSTSTS *12 = . Similarly, we use constraints (14) and (15) to linearize the 

nonlinear constraints iksksiks YETETE *12 =  

ks
i

iks TSTS 12 =∑                                                            sk ∀∀ ,                                        (12) 

)1(*12 iksksiks YSMTSTS −−≥                                    isk ∀∀∀ ,,                                    (13) 

ks
i

iks TETE 12 =∑                                                           sk ∀∀ ,                                         (14) 

)1(*12 iksksiks YEMTETE −−≥                                   isk ∀∀∀ ,,                                     (15) 
 
Objective function 

We choose minimizing makespan as our objective. There are two kinds of 
expressions (constraints (16) and (17)) for our objective functions. Unlike the general 
formulations in the literature, we use these two sets of constraints in the same time to be 
our objective functions. In fact, we have discussed the advantage of using more than one 
set of constraints in the objective part in our previous work. 

ksTEH 1=                                                                      ll SsKk ∈∈ ,                              (16) 

∑≥
k

iksTEH 2                                                               iSs l ∀∈ ,                                     (17) 

Constraints (1)~(17) comprise model 1.    

Model 2 

Basing on the same allocation method in model 1, we have developed another two 
models. In model 2, we introduce another continuous positive variables isTS (the start time 
of product i  on stage s ) instead of the continuous positive variables iksTS2  and iksTE2  in 
model 1 so that we can avoid using the summation parts ( ∑

k
iksTS2  and ∑

k
iksTS2 ). 

Additionally, this leads to more big-M constraints.  



 

Allocation constraints 

The allocation constraints of this model are same as those of model 1 (constraints 
(1)~(6)).  

Timing Constraints 

We also use the timing constraints (7)~(9) of model 1 in this model. The other timing 
constraints are following.  

Constraints (10) show the relationship of the start time of product i  in stage s  and its start 
time in the previous stage.  

issisi TSPTS ≤+ −− )1()1(                                                     is ∀> ,1                                       (18) 

Constraints (11) and (12) keep the star time of product i  in stage s  is equal to the 
time of the slot k  in start sequence when product i  is assigned to slot k  in stage s .  

)1(*1 iksisks YSMTSTS −−≥                                        kis ∀∀∀ ,,                                    (19) 
)1(*1 iksksis YSMTSTS −−≥                                        kis ∀∀∀ ,,                                    (20) 

Constraints (13) represent the relationship of the product start time and the time of 
the slots in start sequence in stage.  

)1(*1 iksisisks YEMPTSTE −−+≥                               kis ∀∀∀ ,,                                    (21) 

Constraints (14) represent the relationship of the product start time and the time of 
the slots in start sequence in the previous stage. 

)1(*1 )1()1( −− −−≥ sikskis YEMTETS                             kis ∀∀> ,,1                                  (22) 
 
Objective function 

Also, we choose minimizing makespan as our objective in model 2. We keep 
constraints (16) in this model and convert constraints (17) of model 1 to constraints (23). 

isis PTSH +≥                                                                iSs l ∀∈ ,                                     (23) 

Till now, we have got model 2. Constraints (1)~(9) and (18)~(23) comprise model 2.   

Model 3 

In this model, we use two sets of positive continuous variables ( ksTE1  and isTS ) which 
are fewer than those of the previous two models.  

Allocation constraints 

Due to the same product assignment method as the two previous models, we use 
the same allocation constraints (constraints (1)~(6)) as those of the two previous models.  



 

Timing Constraints 

In this part, we also use constraints (8) to keep the time of end slot k  bigger than 
that of end slot 1−k . 

Constraints (24) show that product i  in stage s  is not permitted to process until the 
slot 2−k  of the end product sequence in stage s  has ended if product i  has been 
assigned to the slot k  of the start product sequence in stage s . In fact, these constraints’ 
function is same as that of those constraints (9) in the two previous models.  

)1(*1 )2( iksskis YSMTETS −−≥ −        2,, >∀∀ kis                                                           (24) 

Constraints (25) represent the relationship of the start time of product i  in stage s  
and the time of slot k  of the end product sequence in stage s .  

)1(*1 iksisisks YEMPTSTE −−+≥                           kis ∀∀∀ ,,                                        (25) 

Constraints (26) show that the relationship of the start time of product i  in stage s  
and the time of slot k  of the end product sequence in the previous stage.  

)1(*1 )1()1( −− −−≥ sikskis YEMTETS                         kis ∀∀> ,,1                                      (26) 

Constraints (27) represent the relationship of the start time of product i  in stage s  
and the start time of product i  in the previous stage. 

issisi TSPTS ≤+ −− )1()1(                                                  is ∀> ,1                                          (27) 
 
Objective function 

Similarly, we use constraints (16) in this model also. Additionally, we choose 
constraints (28) as the other set in our objective part.  

isis PTSH +≥                                                                iSs l ∀∈ ,                                     (28) 

Consequently, constraints (1)~(6), (8), (16) and (24)~(28) comprise model 3.    

 
 
Model Evaluation 

To evaluate these three models and comparing them with the formulation developed 
by Pinto and Grossmann (1995) and the formulation by Gupta & Karimi (2003), we use the 
example developed by us with C language, which are new problems. This examples involve 
several stages ( S ) with some non-identical parallel units in each stage. All products pass 
through all stages in the same stage sequence. The following are the five examples.  



 

Example: This example is concerned with the scheduling of 10 products in a two 
stages multi-product batch plant. There are 2 parallel identical units in the each stage. Data 
for example 1 are given in Table 1. 

Table 1. Processing time of products in different stages 
Product S1 S2 

O1 27 21 
O2 20 24 
O3 14 29 
O4 28 28 
O5 24 22 
O6 22 30 
O7 12 31 
O8 19 20 
O9 28 30 

O10 22 20 

We implemented all models in GAMS 20.7 and solved all problems with CPLEX 7.5 
on an IBM notebook R40 running WINDOWS XP with single Intel Pentium processor 1.50 
GHz having 384 RAM. 

The solutions of this problem with our three models, the model of Pinto and 
Grossmann (1995) and the model of Gupta and Karimi (2003) are shown in Table 2.  

Table 2. Solutions for models 

Models Time Relative 
gap Binary Non-

zero RMIP Absolute 
gap Variables Constraints

M1 5000 27.50% 400 4820 58 22 841 785 
M2 398 0% 400 4610 58 0 461 1025 
M3 5000 1.49% 400 3598 58 1 441 679 

Gupta 5000 9.86% 300 7420 58 7 441 1652 
Pinto 5000 20.55% 1320 12872 58 15 1601 2916 

Even the numbers of binary variables of our models are more than that of the model 
of Gupta and Karimi (2003). According to the solutions, we can see model 2 can solve the 
problem with only 398 s while other models can not solve the problem within 5000 s. Also it 
seems that the performance of model 3 is better than that of model 1, the model of Pinto 
and Grossmann (1995) and the model of Gupta and Karimi (2003). 

Conclusion  

In this paper, a continuous time MILP formulation (model 2) for short-term scheduling 
of multi-stage multi-product batch plants with non-identical parallel units is proposed. 
Additionally, we have used one example to compare our models to the two models in the 
literature we mentioned before and shown that the performance of model 2 is best.  
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