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Abstract 
Most process models resulting from first principles consist of not only nonlinear 

differential equations but also contain nonlinear algebraic equations, resulting in nonlinear DAE 
systems. Since large-scale nonlinear DAE systems are too complex to be used for real-time 
optimization or control, model reduction of these types of models is a strategy that needs to be 
applied for online applications. However, in the past, model reduction techniques mainly 
focused on differential equations, and no general model reduction methods specifically geared 
towards reducing DAE systems have been proposed. Since in most cases, the number of 
algebraic equations by far exceeds the number of differential equations, it is insufficient to 
simply reduce the differential equations by conventional methods (POD, balancing, etc.) and 
leave the rest of the model intact. 

This paper presents a novel technique for reducing nonlinear DAE systems. This 
method can reduce both the order of the model by eliminating some of the differential 
equations as well as the number and complexity of the algebraic equations. This is achieved 
by a 3-step approach: 1) performing order reduction of the differential equations and algebraic 
equations; 2) identifying correlation in the variables that connect the retaining differential 
equations to the algebraic ones; 3) reduction of the “input-output” behavior of the algebraic 
equations via system identification techniques.  

This procedure has the advantages over other methods in that it addresses both 
reduction of the algebraic and the differential equations and that it results in a system where 
the algebraic equations can be represented by a feedforward neural network. This last 
property is important insofar as the reduced model does not require a DAE solver for its 
solution but can instead be computed by regular ODE solvers. 

A more detailed description of the model reduction procedure is provided next: in a 
first step, the controllability and observability covariance matrices for the differential variables 
are computed. While a controllability covariance matrix can be computed for the algebraic as 
well as the differential variables, it is important to point out that the information contained in this 
matrix is only meaningful for the description of the input-to-state behavior of the differential 
equations. At the same time the covariance matrix can be used to determine the relationship 
between the algebraic variables. Since algebraic variables have no dynamics, the perturbation 
on the algebraic variables cannot introduce output responses which are not already reflected in 
the perturbation of the differential states. Therefore describing a state-to-output behavior for 
the algebraic variables is not meaningful. In a second step, balancing is applied to compute the 
state transformation matrix for the differential variables; and singular value decomposition is 
applied to determine the degree of correlation between the algebraic variables. The two 
transformation matrices obtained from these computations can then be applied to the system. 
The resulting model still has the same order and identical input-output behavior to the original 
system. However, it has the advantage that it can easily be determined how much a model can 
be reduced without loosing the important parts for the input-output behavior of the system. The 
model reduction itself is performed by balanced truncation or residualization for the differential 
equations and by replacing the algebraic equations with an explicit expression obtained from 
system identification. Feedforward neural networks are used in this work for the reduction of 
the algebraic equations.  

This technique is illustrated with a case study. The behavior of reduced-order models 
of a distillation column with 32 differential equations and 32 algebraic equations is compared.  

 



1. Introduction 
Most process models derived from first principles consist of differential as well as algebraic 

equations, resulting in differential-algebraic equation (DAE) systems [1, 2]. Models described 
by DAE systems are often of high order resulting in difficulties for online control due to the 
extensive computational effort. Reducing the size of the model while retaining important 
system properties for controller design is the main goal of control-relevant model reduction.  

This paper presents a new technique for reducing nonlinear DAE systems for controller 
design. The method reduces both the order of the model by eliminating differential equations 
as well as the number and complexity of the algebraic equations. This technique addresses 
both reduction of the algebraic and the differential equations and results in a system where the 
algebraic equations can be represented by an explicit expression, e.g., a feedforward neural 
network. This last property is important insofar as the reduced model does not require a DAE 
solver for its solution but can instead be computed by regular ODE solvers.  
2. Model reduction of DAE systems 

The work presented in this paper focuses on DAE systems of the following form 
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The reduction is performed by first determining state transformations that transform the system 
into a form appropriate for model reduction which is then followed by a truncation/system 
identification procedure. 
2.1. Computation of transformations  

For ordinary differential equation (ODE) systems, the procedure of computing the 
transformation matrix via balancing of controllability and observability covariance matrices was 
presented in Hahn and Edgar [3]. However, since algebraic equations do not represent 
dynamic behavior, it is not meaningful to compute the controllability and observability 
covariance matrices for the entire systems (differential states and algebraic variables). 
Therefore, a modified version of the balancing procedure is presented for application to DAE 
systems: (1) the system is originally at steady state and is then excited by changes in the 
inputs along the lines of the computation procedure for the controllability covariance matrix; 
data are collected along the trajectories generated by these excitations and a covariance 
matrix 
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is computed, where W B11 Bis equal to WBCB, the controllability covariance matrix of the differential 
states and W B22 Bis the covariance matrix of the algebraic variables; (2) the observability 
covariance matrix, WBOB, is computed for states described by the differential equations; (3) the 
transformation TB1 B for the states, x, is computed from balancing W BC BandB BW BOB; (4) a singular value 
decomposition of W B22 B 
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is used to compute the transformation TB2 B for the algebraic variables, z, where TB2 B = UB2 B. 



2.2. Transformed system 
Transformations TB1 B and TB2 B  
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can be applied to the original model (equation (1)) resulting in the transformed system 
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where hgf ,,  represent nonlinear functions of the transformed system. This transformed 
system has the same number of differential and algebraic equations as the original system and 
identical input-output behavior. However, the differential states as well as the algebraic 
variables are ordered in descending order with their importance to the control-relevant 
behavior of the model. Essentially, the system (5) is in a set of coordinates suitable for 
reducing the size of the model. 
2.3. Order reduction of differential and algebraic equations 

Once the system is transformed into a form suitable for model reduction, the number of 
differential equations and algebraic equations are reduced by truncation, resulting in  
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where 1x  contains the states of the reduced system, 2x  represents the states that are reduced 
and k is the number of differential equations in the reduced-order model.  
2.4. Further reduction of algebraic equations via system identification 

So far, the number of differential and algebraic equations has been reduced separately by 
the described technique. It is possible to obtain a more suitable system of even smaller size 
and lesser complexity. Consider equation (7), which is part of the DAE system (6) 
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where ĝ  represents a new nonlinear function containing variables 1x  and 1z  only. The 
relationship between 1x  and 1z  needs to be retained in the reduced model to achieve a good 
approximation of the behavior of the original system. Since the inputs and the outputs of the 



algebraic equations are dependent in a static manner, it is sufficient to identify this static 
relationship between 1x  and 1z as shown in equation (9) 
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resulting in the following system:  
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It has to be taken into account for the identification procedure that the relationship between 
1x  and 1z  is usually nonlinear. One type of model that is able to take this property into account 

is artificial neural network (ANN). The resulting reduced system is given by 
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3. Case study 
3.1. Model description  

Consider a distillation column with 30 trays for separation of a binary mixture. The column 
has 32 differential states (concentrations of component A). The Wilson equation is used for 
computation of the vapor-liquid equilibrium, resulting in a model with 32 differential equations 
and 32 algebraic equations. The reflux ratio is set to 3.0 and serves as the manipulated 
variable while the concentration of the distillate is the output of the system.  
3.2. Order reduction of differential and algebraic equations 

When balancing is applied for the reduction of the differential equations, the main criterion to 
determine the number of states to be retained is based on the magnitude of the Hankel 
singular values of the balanced covariance matrices. Sorted by the magnitude from large to 
small, the first 15 Hankel singular values are shown in Fig. 1 and Table 1 lists the values of the 
first 6. For this example, truncated systems that contain 2, 3 and 5 states were investigated. 
The singular values in the matrix 2Σ  (Equations 2) indicate that a system with 3 algebraic 
variables is sufficient for models reduced by balancing. 

It can also be concluded that systems with more states will more closely approximate the 
original system. However, there is always a tradeoff between the performance, i.e., the quality 
of the approximation, and efficiency, i.e., the required computational effort, as is illustrated in 
Table 2. Based on Fig. 2 and Table 2, it can be concluded that the reduced system with 3 
differential equations results in a very good approximation to the original system with a 
relatively small computational burden.  
3.3. Further reduction of algebraic equations via neural network 



The neural net contains 1 hidden layer and 1 output layer, with 5 nodes in the hidden layer 
and 3 nodes in the output layer. Hyperbolic tangent functions were used in the hidden layer 
and linear functions in the output layer. The network was trained using the Levenberg-
Marquardt algorithm [4, 5]. After order reduction has been performed, the remaining differential 
states serve as the inputs to the neural network while the outputs are given by the remaining 
algebraic variables.  

Three cases are compared to illustrate the performance of the presented method for model 
reduction of DAE system: (1) a linearized system with 32 differential equations and 32 
algebraic variables; (2) only the differential equations are reduced by balanced truncation while 
the algebraic equations remain unchanged, resulting in a reduced system with 3 differential 
equations and 32 algebraic variables; (3) the system is reduced by the presented procedure, 
i.e., differential equations as well as algebraic equations are reduced by truncation and the 
effect that the states have on the remaining algebraic variables is identified by a neural 
network. This last reduced system contains 3 differential equations and a neural network with 
three inputs and three outputs. Fig. 3 shows a comparison of the performance of these three 
reduced-order systems for step changes in the input of -10% and +10%. Several observations 
can be made based upon Fig. 3: (1) the upper and the lower trajectories are not symmetric, 
which illustrates the nonlinearity of the original system; (2) the performance of the linearized 
system is not as good as the ones using a nonlinear reduced model; (3) the reduced model 
including a neural network provides a good approximation to the full-order system. Although 
the reduced DAE system is a fairly small model, it exhibits better performance than case 1 and 
performance comparable to model 2 and to the original system. 
4. Conclusions 

This paper presents a new approach for the reduction of nonlinear DAE systems. The 
investigated technique performs order-reduction of the differential equations and reduces the 
size and complexity of the model. One of the strong points of this approach is that reduction of 
the differential and the algebraic equations is not performed independently from one another, 
but the interplay between the states and the algebraic variables is taken into account. 

The procedure has been illustrated by applying it to a model of a distillation column. The 
algebraic equations were reduced by identifying a feedforward neural network resulting in a 
model of significantly smaller size that is also easier to simulate since the algebraic variables 
can be computed via an explicit expression.  
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Table 1: Hankel singular values for states 
 

State 1 2 3 4 5 6 

Singular 
Value 0.048 0.0023 0.0002 0.00006 0.000009 0.000006 

% of sum 94.9% 4.5% 0.4% 0.12% 0.0178%  0.0119% 

 

 

Table 2: Comparison of computation times for reduced-order models 

 

States 2 3 5 32 

Time (Seconds) 0.06 0.07 0.14 0.4 
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Fig. 1.  Hankel singular values of the distillation column model 
 

 

 

 



 
 

Fig. 2.  Comparison of reduced systems with different number of remaining differential 
equations 

Note: the curves represent the offsets between the values of each case and the corresponding 
values of the full-order system. 
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Fig. 3.  Performance of presented method for DAE model reduction 
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