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Abstract 
 
A tool for the order reduction of differential algebraic equations (DAEs) is outlined in this report.  Through the 
use of an equation dependency analysis and nonlinear function approximation, the algebraic equations can be 
divided into sets that require implicit or explicit solutions.  If all of the algebraic variables can be solved or 
approximated explicitly, the DAE becomes a set of ordinary differential equations (ODEs).  As a test case for the 
theory, a dynamic equilibrium binary distillation column model is analyzed with the generalized approach.  The 
index 1 DAE model of 52 differential and 233 algebraic states is reduced to an ODE set of 26 differential states.  
Through simulations, the resulting ODE model solution is found to be in agreement with the original DAE model 
solution. 
 
1.  Introduction 
 
DAEs consist of differential equations and algebraic equations.  In the general form, the DAE problem is as 
follows: 
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where z is a vector of variables and t is a scalar.  The DAE is nonlinear when the vector f is a nonlinear function 
of the derivative of z,  z, or t.  In order for the problem to be a DAE, at least one of the coefficients for the 
derivative of z must be zero.  The DAE can be grouped into differential equations (f) and algebraic equations (g).  
The variables are also divided into differential variables (x) and algebraic variables (y). 
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Large-scale nonlinear DAE models arise in object-oriented simulators, electrical circuit models, and many other 
models of physical processes.  Reformulating the DAE model into an equivalent ODE model is desirable because 
of certain numerical advantages.  These advantages include application of nonlinear model reduction techniques 
(Hahn and Edgar, 2002), no requirement for consistent initial conditions, and no numerical challenges associated 
with DAE systems of index greater than one (Brenan, et. al., 1989). 
 
One method of converting a DAE to an ODE is to solve the algebraic equations implicitly.  Since the implicit 
solution of a large number of algebraic equations is computationally expensive, variables that can be solved 
explicitly are removed from the set y (Hangos and Cameron, 2001).  This partitioning and precedence ordering is 
performed by analyzing an incidence matrix J defined by 
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The assignment of variables to equations is made by performing row operations that transform J into a matrix 
with entries on the diagonals.  Obtaining a precedence order and partitioning can be done using a manual directed 
graph (digraph) as a graphical approach, using matrix methods to produce a block diagonal lower matrix (Tarjan, 
1972), or through tearing (Borutsky and Cellier, 1996).  These techniques attempt to maximize the number of 



algebraic variables that can be solved explicitly.   However, this problem is NP complete, meaning that all 
possible combinations of variables must be attempted to find a maximum set of explicit equations (Carpanzano, 
2000).  Another technique for order reduction is through relaxation of the algebraic states (Otter, et. al., 1996).  
Relaxing directly generates a Gaussian elimination scheme when the algebraic equations are linear or made linear. 
 
2. Equation Dependency Analysis 
 
The method proposed in this work differs from previous work by analyzing a dependency matrix M-1 instead of 
the incidence matrix J.  It will be shown that M-1 can reveal more information about variable dependencies. 
 
The dependency matrix M-1 is derived by first linearizing the DAE. 
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The prime indicates deviation from reference values (i.e. refxxx −=′ ).  A, B, C, D, and E are coefficient 

matrices and αααα and ββββ are coefficient vectors.  The reference values are selected to give non-zero coefficients for 
the deviation variables.  Since the selection of reference values is arbitrary, the coefficients can be arbitrarily 
selected to be 1 if the equation contains the variable and 0 otherwise.  In this case the matrix E is equivalent to the 
incidence matrix J.  Rearranging and combining the linear differential and algebraic equations results in the 
following matrix form: 
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The dependency matrix M-1 reveals the solution dependencies among the linearized equations. 
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The variable dependency information in M-1 can be illustrated by a linear system of Ax = b.  When A is 
invertible, the solution to x is A-1b.  Each element of the vector x is computed from the corresponding row of A-1

ij 
and the vector b. 
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However, the solution to xi is independent of bj if A

-1
ij = 0 ∀  j≠i.  If xi is independent of bj then it is also 

independent of equation j.  The dependencies in the linear system also apply to the corresponding nonlinear 
system.  Therefore, linearizing the DAE reveals the structure of the nonlinear system dependencies. 
 
The matrix M-1 can be converted to lower triangular block diagonal form with Tarjan’s algorithm [8].  Each block 
along the diagonal is a set of algebraic equations that require a simultaneous solution.  Explicit approximations to 
implicit solutions can be attempted to further reduce the DAE order (Bosley, 1996). 
 
3.  Case study with a binary distillation column model 
 



A binary distillation column model, described in Appendix A, is employed to show a practical application of the 
DAE to ODE model conversion.  The DAE model has 52 differential equations and 233 algebraic equations.  The 
independent variables are: 
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During the linearization step, the reference values are selected to give non-zero coefficients for the deviation 
variables.  Since the reference values are arbitrary, the non-zero coefficients are shown by X if the equation 
contains the variable and 0 otherwise. 
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The non-zero values of M-1 show the dependencies between the variables and equations.  The non-zero values of 
M-1 in lower triangular block diagonal form are shown below with the corresponding variable order. 
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Equations 1-3 indicate that T, PA

sat, and PB
sat must be solved simultaneously since the corresponding equations 

form one block.  The equations for PA
sat, and PB

sat can be explicitly substituted into the bubble point temperature 
equation. 
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For the cyclohexane / heptane binary mixtures, an explicit temperature solution is approximated by a second order 
polynomial in composition. 
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The vector c was calculated with a least squares fit with data from the sets [ ]10∈Ax  to be 

[ ]Tc 3.73621.57-385.42= .  The polynomial fit has a mean sample error of 0.012 K and a maximum 
sample error of 0.04 K.   
 
The molar flow rates can form the last block along the diagonal.  Since the molar flow rate equations are linear, 
they can be solved explicitly.  After solving the flow rates the dependency matrix indicates that the differential 
equation variables can now be solved explicitly.  If extraneous algebraic equations were present in the model, they 

could be identified at this point since the equations for Ax&  and h&  have no further dependencies.  By explicitly 
solving all of the algebraic equations, the model is in an ODE form.  In this form, nonlinear model reduction 
techniques can be applied to further reduce the number of differential states. 
 
5.  Nonlinear model reduction 
 
As an ODE, the distillation column model is available for further model reduction through balanced covariance 
matrices or proper orthogonal decomposition (POD).  POD was chosen for this example and the number of 
differential states was reduced to 26.  Figure 1 shows the bottoms composition after a 5% increase in reboiler 
duty. 
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Figure 1 - 5% Step Change in Reboiler Duty 

The ODE model with 52 states approximates the 285 state DAE very well.  The ODE model with 26 
states also approximates the DAE model well but with a larger offset in the steady-state value of 
composition.  ODE models with fewer than 20 states performed poorly, indicating that there are at least 
20 dynamic degrees of freedom in the binary distillation column model.   
 
6.  Summary 
 
The order reduction of algebraic equations for DAEs is proposed through an equation dependency analysis.  As a 
first step, the equation dependency on the variables is determined by linearizing the DAE and inverting the 



coefficient matrix corresponding to the differential derivatives and algebraic variables.  After a transformation to 
lower triangular block diagonal form, the independent equations or systems of equations can be identified and 
solved. 
 

1. Linearize the set of DAEs 
2. Compute the dependency matrix, M-1 
3. Transform M-1 to the lower triangular block diagonal form 
4. Solve successive independent groups of variables given by successive blocks 
5. Perform nonlinear model reduction techniques on the ODEs 

 
As a test case for the theory, an index 1 DAE model of a distillation column was reduced to the ODE form and 
further reduced with POD.  Simulations confirmed that the ODE model is a good approximation to the DAE 
counterpart. 
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Appendix A 
 
Description 
Dynamic binary distillation column model with equilibrium stages 
 
Diagram 
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Manipulated Variables (3) 

Fm&   Feed rate (gm/sec) 

Rm&   Reflux rate (gm/sec) 
Q  Reboiler heating rate (J/sec) 
 
Differential States (52) 
xA  Liquid mole fraction 
h  Specific enthalpy (J/mol) 
 
Algebraic States (178) 
yA  Vapor mole fraction 
xL  Liquid mole fraction 
T  Temperature (K) 

Vn&   Vapor molar flow rate (mol/sec) 

Ln&   Liquid molar flow rate (mol/sec) 
hV  Specific vapor enthalpy (J/mol) 
hL  Specific liquid enthalpy (J/mol) 
Pi

sat  Saturation pressure of compound j (Pa) 
 
Other 
nL  Liquid molar holdup (mol) 
MWF(xA) Molecular weight of feed stream (gm/mol) 
MWR(xA) Molecular weight of reflux stream (gm/mol) 
P  Column pressure (Pa) 
hVj(T)  Specific vapor enthalpy of compound j (J/mol) 
hLj(T)  Specific liquid enthalpy of compound j (J/mol) 
 
 



Differential Equations 
Component A mole balance at each stage 
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Energy balance at each stage 
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Algebraic Equations 
Raoult’s law for VLE 
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Liquid mole fraction equation 
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Bubble point temperature equation 
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Vapor molar flow rate equation 
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Liquid molar flow rate equation 
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Vapor enthalpy equation 
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Liquid enthalpy equation 
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Pure component j saturated vapor pressure equation (DIPPR database) 
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