
 

ESTIMATION OF VISUAL QUALITY OF INJECTION-MOLDED POLYMER PANELS 

J. Jay Liu and John F. MacGregor 

McMaster Advanced Control Consortium, Department of Chemical Engineering, McMaster 
University. Hamilton, ON    L8S 4L7 Canada 

Abstract 

A new machine vision approach for estimating manufactured product appearance is illustrated. 
This new approach consists of: (1) extraction of textural information from product images, (2) 
estimation of measures of the visual quality of the product from the textural information 
extracted. This method is specifically aimed at treating the stochastic nature in the visual 
appearance of many manufactured products. This non-deterministic nature of product 
appearance has been a main obstacle for the success of machine vision in the process 
industries. This approach is successfully applied to an industrial process for estimation of the 
visual appearance of injection-molded plastic panels. 
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1 Introduction 

 The definition of machine vision or computer vision can be given as “interpretation of 
an image of an object or scene through the use of optical non-contact sensing mechanisms for 
the purpose of obtaining information and/or controlling machines or processes” [1]. The main 
purpose of machine vision is “to allow a computer to understand aspects of its environment 
using information provided by visual sensors” [1] and thus it requires a combination of low-level 
image processing to enhance the image quality and higher level pattern recognition and image 
analysis to recognize features present in the image [2]. Machine vision has been studied for 
about 40 years but the study in last 15 years has shown rapid progress due to the great 
advances in imaging and computing technologies. The subject of machine vision now 
embraces innumerable topics and applications: automatic assembly and inspection, automatic 
vehicle guidance, automatic document interpretation, verification of signatures, checking of 
fingerprints and recognizing faces, and analysis of remotely sensed images, to list just a few 
[1,3]. 

 Automatic inspection and assembly is one of the areas where machine vision has 
been most successfully applied and it is still showing substantial growth. The necessity of 
improvements in quality, safety, and cost saving is the driving force for this growth. “However, 
most successful techniques and their applications in this area have been confined to a specific 
type of environment where certain assumptions can be made about the scene” [1]. In typical 
manufacturing industries such as microelectronics fabrication, for example, an image provides 
a scene of objects with pre-determined shape, structure, orientation, and so on, unless the 
position of a camera changes. In other words, images from such industries are essentially 
deterministic. The primary goal of the inspection in such manufacturing industries is to check 
whether there are missing objects in pre-specified regions in the image or whether objects in 
the image are in desired orientations or of desired size, and the necessary analysis is mainly 
done directly on the image itself; i.e., in image space.  



 

 On the other hand, in the process industries there is another class of problems where 
the major concern is some ill-defined visual appearance of products or processes such as the 
aesthetics of manufactured countertops, the health of mineral flotation froth [4], or visible 
patterns on injection-molded polymer panels. In this case, simple assumptions about the scene 
cannot be made any longer due to the dominantly stochastic nature of the visual scene. 
Therefore, machine vision has seldom been applied to those processes and has had little 
success when it has. In wood inspection for example, sample-to-sample variation in the grains 
is too large because natural materials have almost arbitrary shape and orientation. Therefore 
the state or the quality of these processes or products is almost always judged by trained 
human operators and any control decisions are left to their discretion at the present time. 
Inconsistency in human judgment still remains a critical issue in the process industries for this 
reason. 

 The contribution of this paper is to propose a new machine vision approach for the 
assessment of the visual quality of manufactured products. In this approach, machine vision 
will include new application areas and new tasks that have seldom been tried in contemporary 
machine vision research. New application areas include all process industries where stochastic 
visual appearance of products or processes is the major concern. New tasks include 
estimation, modeling, and optimization of visual quality of the process or the product. Visual 
quality studied in this paper means textural appearance of processes and products. However, 
it can also include spectral (i.e., color) appearance of products. The rest of this paper is 
organized as follows: In Section 2, we propose a new machine vision approach by presenting 
the related theories such as wavelet texture analysis, estimation of visual quality from textural 
information, and causal modeling of visual quality. This new approach is then illustrated via an 
application to the visual appearance of injection-molded plastic panels in Section 3. Summary 
and conclusion are given in Section 4. 

2 A New Machine Vision Approach 

2.1 Extracting Textural Information Using The Two-Dimensional Wavelet Transform 

The appearance or aesthetics of a product usually depend on a combination of color 
and textural properties of its surface. In the injection-molding application in Section 3 of this 
paper, the images are grayscale images and appearance is related only to textural properties. 
Therefore, we will focus on the extraction of textural properties via two-dimensional wavelet 
transforms. However, there are many works on the extraction of spectral information from color 
images [5,6] and some recent work on combining both spectral and textural analysis [4,7]. 

2.1.1 Wavelet Transform 

 In wavelet analysis, a continuous signal f(x) is decomposed in terms of a family of 
orthonormal bases ψm,n(x) obtained through translation and dilation of a mother wavelet ψ(x), 
i.e.,  
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where m, n are integers. Due to the orthonormal property, the wavelet coefficients then can be 
defined as the convolution of the signal with these wavelet bases: 
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The mother wavelet ψ(x) is related to the scaling function φ(x) with some suitable sequence h[k] 
[8-10]; 
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discrete wavelet transform (DWT) at decomposition level j can be performed without requiring 
the explicit forms of ψ(x) and φ(x); 
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 The DWT coefficients of a signal f(x) are now computed as 
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where the a(j)[l]’s are expansion coefficients of the scaling function or approximation 
coefficients and the d(j)[l]’s are the wavelet coefficients or detail coefficients. In achieving a 
two-dimensional (2-D) discrete wavelet transform (DWT), there are two different solutions 
depending on the type of filters and the type of down-sampling lattices [10]. A separable solution 
(Figure 1a) gives rectangular divisions of frequency spectrum (Figure 1b) and strongly oriented 
coefficients (often called subimages because the wavelet coefficients for 2-D signals are also 
2-D) in the horizontal and vertical directions (see Figure 1a). Visible wave patterns in the 
plastic panels studied in this paper have distinct (or a combination of) orientations and thus a 
2-D DWT implemented by the separable solution is suitable for extracting the visible patterns 
(see images in Section 3).  

2.1.2 Wavelet Texture Analysis 

 Among other texture analysis methods, a 2-D DWT-based method, which is often 
called wavelet texture analysis (WTA) seems best not only because it has shown better 
performance than other methods in many cases [11,12] but also there is strong psychophysical 
evidence that the human visual system does multi-channel, space-frequency analysis [13]. WTA 
has been successfully applied to characterization of steel surface and flotation froth monitoring 
in previous studies [4,11]. 

 A basic assumption for WTA is that a texture has its unique distribution (i.e., energy or 
entropy distribution) in the 3-D scale space consisting of the two spatial axes and an additional 
scale axis. Therefore, if the scale axis of the scale space of a textured image is discretized 
appropriately, different textures will have different features at the discretized scales. When a 
wavelet subimage (i.e., a(J) and k

jd )(
,  j ∈ {1, 2, …, J} and k ∈ {h, v, d} for a separable 2-D DWT, 

Figure 1a) is treated as a matrix, then the power or energy of the subimage can be defined 



 

using the Frobenius norm, 
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Often this is divided by the number of pixels, yielding averaged power or normalized energy. A 
feature vector composed of energies of all subimages is often called wavelet energy signature, 
one of the most popular wavelet textural features. Other popular features include entropy and 
averaged l1-norm of subimages. Since the normalized energy of each subimage is equal to 
variance of a corresponding channel (after mean-centering for the approximation subimage) 
the wavelet energy signature also represents contrast information of subimages. Entropy 
signatures are equivalent to high-order moments of subimages. 
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Figure 1. A separable solution for 2-D DWT. (a) A separable two-dimensional filter bank at the j-th decomposition 
stage. It consists of horizontal and vertical filtering of 2-D signals using low-pass and high-pass 1-D wavelet filters 
H0 and H1, and separable horizontal (2↓1) and vertical (1↓2) down-sampling by 2. (b) Division of spatial 
frequency spectrum by a separable solution for one-level decomposition. 
 
 The idea of WTA based on the 2-D DWT can be extended to 2-D wavelet packets (WP) 
with an arbitrary tree structure [14,15]. When an image is decomposed down to the J-th level, the 
size of a feature vector for an image (when including an approximation subimage) is 3J+1 and 
4J for the 2-D DWT and the 2-D full-tree WP, respectively. The approximation subimage is 
sometimes excluded because the variations induced by lighting or illumination are usually 
captured in the approximation subimage. 

2.2 Estimation of Visual Quality in Latent Variable Spaces 

 Although a single image can provide an enormous amount of information about the 
scene depicted, the human visual system can selectively extract the information that is 
relevant only to specific tasks. Furthermore, the human brain can reduce the dimension of the 
extracted information and analyze it. For example, operators evaluate the visual quality of steel 
surfaces as good, medium, and bad, or evaluate the aesthetic quality of manufactured 



 

countertops as on-specification and off-specification by looking at an image or a scene that 
can be easily of several megabytes and hundreds of thousands of pixels. 

 After extracting wavelet textural features (usually much less than 100 features per 
image) from images, further dimensional reduction can be done using a method such as 
Principal Component Analysis (PCA) [16-18]. Fisher’s Discriminant Analysis (FDA) [19] can be 
used when class labels are available, and Independent Component Analysis (ICA) [20] and 
Projection Pursuit (PP) [21] can also be used on the PCA scores (called pre-whitening by PCA). 
All these linear projection methods find an operator (a matrix) that can map high-dimensional 
feature space to a low-dimensional (usually 2 ~ 4 dimension) latent variable subspace and 
they are perfect candidates in estimating visual quality. Let f be a (K×1) feature vector after 2-
D DWT of an image and followed by a nonlinear transform (e.g., 

F
  ⋅ ) and let t be a (A×1) 

latent vector after dimensionality reduction. Then the following equality holds via a (A×K) 
mapping matrix W; 

Wft =  (8) 

The matrix W is called a loading matrix in PCA and a separating or unmixing matrix in ICA. 

 In any linear projection method, the rows of the mapping matrix represent contributions 
of features f to each of the latent variables in t because each latent variable is simply a linear 
combination of features with elements in each row of the mapping matrix as coefficients. 
Therefore if features have certain psychophysical meanings then we can also give a 
psychophysical meaning to each latent variable. This is crucial when we numerically estimate 
visual quality and this is the one reason why we choose projection methods. Another reason is 
that the visual quality of products and/or processes of interest is not a discrete or disjoint 
quality as in typical classification tasks, rather it is a continuous quality [4, 11]; For example, the 
quality of a steel surface may gradually deteriorate from good to medium and from medium to 
bad, and the state of a mineral flotation process may gradually change depending upon the 
amount of chemical reagents added, the mineral content of the ore, and the state of previous 
flotation cells. Therefore using projection methods and working with continuous latent variables 
are more suitable in this circumstance than using classification methods and working with 
discrete class labels. 

3 Application to Injection-molded Plastic Panels 

3.1 Description of Data 

 The image data set used consists of 50 grayscale images of injection-molded polymer 
panels. This data set was obtained via a designed experiment with three operating variables. 
The variables are polymer formulation, injection speed, and plaque position and the number of 
levels were five, two, and five respectively. Four samples of the images are shown in Figure 2. 
Depending on operation conditions, plastic panels can contain visible patterns such as stripes, 
swirls, and ripples with varying characteristics in their shapes, directions, and intensities as 
shown in the figure. Plastic panels with the desired visual quality have no such visible patterns, 
i.e., they are visually flat as I074 in the figure. The ultimate goal of this study is to find 
operating conditions that can produce plastic panels with the visual quality specified by users. 
The spatial frequency components of the four images in Figure 2 are very different from each 



 

other. I074 has almost zero frequency (DC) components while I243 has very high frequency 
components (i.e., fine gray dots). I183 and I283 have distinct visible patterns with very low 
frequency components (e.g., stripes and ripples) as well as some visible patterns with high 
frequency components. 

 The main difficulty arises from the fact that there is no distinct class of patterns since 
different visible patterns can merge together to form more complicated patterns. For example, 
the four ripples in I183 in Figure 2 are not identical to each other; from top to bottom, the ripple 
becomes w-shaped (the 2nd the and 3rd ripples) and loses its distinct shape at the bottom. Five 
arcs in I283 in Figure 2 also show varying characteristics of patterns. There can be an infinite 
number of patterns depending on the number and the types of basic patterns, their varying 
characteristics, and how they are merged. In general, there is a wide range of stochastic 
pattern differences in the images. 

    
I074 I183 I243 I283 

Figure 2. Four samples of pre-processed original images before converted to a grayscale complement. A plastic 
panel with desired visual quality (I074). Three images with unwanted visual quality (I83, I243, and I283). 
 
3.2 Estimation of Visual Quality 

 An 1100×2700 image was cropped from each of the original 50 images, down-
sampled by 3 to produce 367×900, and finally converted to obtain the complement of the 
grayscale image. After these pre-processing steps, a 4-level 2-D DWT was applied to each 
image using order-2 Daubechies filters. These choices were made by trial and error but one 
can follow some guidelines [15, 23].  Level-one detail subimages of all 50 images showed 
nothing but irrelevant noise and thus they were excluded from the extracted wavelet feature 
vectors. All other detail subimages capture horizontal, vertical and diagonal features of the 
original images. Level 3 and 4 wavelet subimages of I128 are shown in Figure 3 (Figure 3 will 
help understanding the PCA score space later). The square root of the normalized energy was 
calculated for each subimage and used as textural features. Therefore each image is 
represented by a (10×1) feature vector (energies corresponding to a4 and h

id , v
id , d

id  (i = 2, 3, 
4)). 
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Figure 3. (a) image I128 and (b) some of its wavelet subimages. 
 

Table 1. Summary of Principal Component Analysis results 

Dimension of Latent Space R2 Q2 

1 0.928 0.916 

2 0.971 0.943 

3 0.987 0.958 

4 0.995 0.970 

 
After auto-scaling, PCA was applied to the (50×10) X matrix where each row consisted 

of a feature vector for one image. Four statistically significant principal components were found 
based on Bootstrap risk estimate [24]. R2 (the fraction of variance of feature vectors explained 
by the PCA model) and Q2 (the fraction of variance predicted for images not used in the PCA 
model) are summarized in Table 1 and a residual plot (distance to the model, DmodX [25]) is 
given in Figure 4. Clearly, the variability of images in wavelet feature space is well modeled by 
this PCA model. In order to see whether the four score values of the feature vectors of the 
images reveal similarity and/or dissimilarity between the visual qualities of the images, a 
simple nearest-neighbor clustering based on the Mahalanobis distance [26] of score values is 
applied to all 50 images to find the nearest neighbors of the images in Figure 2. The two 
nearest neighbors of each of the four images and the corresponding Mahalanobis distances 
are shown in Figure 5. To give a reference regarding the similarity/dissimilarity between visual 
quality and the corresponding Mahalanobis distance, the distances between the four images in 
Figure 2 are listed in Table 2. It is clear from the Figures 2 and 5, and Table 2 that the nearest 
neighbor images in Figure 5 and corresponding images in Figure 2 are very close in terms of 
visual quality and in terms of the Mahalanobis distance. As expected from the Figure 2, I283 is 
the farthest neighbor of I074 (the Mahalanobis distance is 3.614) and the distances between 
I074 and I243 and between I183 and I283 are 3.049 and 1.831, respectively. By comparing the 
magnitude of the Mahalanobis distances in Table 2 with those in Figure 5 and comparing the 
visual similarity/dissimilarity between images in Figures 2 and 5, the principal components do 
reveal similarity and/or dissimilarity between the visual qualities of images. 
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Figure 4. A residual plot for the PCA model 

Table 2. Mahalanobis distances between the four images in Figure 2 

 I074 I183 I243 I283 

I074 0 3.303 3.049 3.614 

I183 - 0 3.104 1.831 

I243 - - 0 1.898 

I283 - - - 0 

 
 Loading plots and score plots from the PCA model are shown in Figures 6, 7 and 8. 
Since the textural signature used in the analysis is equivalent to the standard deviation of 
wavelet subimages, it represents the presence of visible patterns as well as multiresolution 
contrast information of the pre-processed original images. The p1 loading plot in Figure 6 
shows that images in the positive t1 direction have more contrast in all subimages. In other 
words, visible patterns in images, whether they are is stripes, swirls, ripples, or fine gray dots, 
become more and more noticeable when moving toward the positive t1 direction. To verify this, 
three images I263, I223, I054 that are at each end and close to the center of the t1 axis in the 
t1-t2 score plot of Figure 7 are shown in Figure 9. As expected, I263 at the negative end of t1 
axis in the score plot has almost no noticeable visible patterns while I223 at the opposite end 
of t1 axis has visible patterns that are strongly noticeable. The visual quality of I054 lies 
between that of I263 and I223 in both the image space and the t1 score value. On the other 
hand, the p2 loading plot in Figure 6 tells that images in the positive t2 direction have highly-
structured visible patterns such as stripes, swirls, and ripples because they have low frequency 
signals in horizontal, vertical and/or diagonal directions as represented by the big positive p2 
loadings on hd4 , vd4 , and dd4 . Figure 3(b) illustrates how the wavelet subimages capture these 
low frequency wave patterns. Images in the negative t2 direction have less structured visible 
patterns such as fine gray dots. Images I267 (negative t2) and I133 (positive t2) in Figure 9 



 

show this behavior. Again the visual quality of I054 is in the middle of I267 and I133 in both 
image space and the t2 score value. 
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(c) (d) 

Figure 5 Two nearest neighbors of the four images shown in Figure 2 and corresponding Mahalanobis distances 
to the images. (a) I263 and I268 for I074 (b) I198 and I188 for I183 (c) I267 and I278 for I243 (d) I293 and I288 for 
I283 

 
 The Psychophysical meaning of the latent variable t3 can be interpreted in a similar 
way. It is clear from the p3 plot that images in the positive t3 direction will have strongly 
noticeable vertical patterns (see big positive weights of vd4  and vd3  in Figure 6) while images in 
the negative t3 direction will have strongly noticeable horizontal patterns (see negative weights 
of hd4  and hd3  in Figure 6). Two images, I123 (negative t3 in Figure 8) and I228 (positive t3 in 
Figure 8), are shown in Figure 10 to verify this behavior. The psychophysical meaning of t4 is 
less clear because the score vectors are forced to be orthogonal to previous scores and the 
most obvious visual characteristics have been explained in t1~t3. But from the p4 plot, images in 



 

the positive t4 direction should just have darker low frequency background as shown in Figure 
6 by high p4 loading on the approximation a4. The two images I089 (a negative t4 score) and 
I059 (a positive t4 score) in Figure 10 verify this behavior. 
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Figure 6 Loading plots for the 4 principal components 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 A t1-t2 score plot 
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Figure 8 A t3-t4 score plot 
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Figure 9 Five selected images in the t1-t2 score plot. 

 
4 Conclusion 

 A new paradigm for machine vision is presented for handling stochastic textural 
appearance in the process industries. The new machine vision can also be extended easily to 
include spectral appearance as well by using proper methods [7]. It is applied in this paper for 
the estimation of the visual quality of injection-molded plastic panels but the new paradigm 
also opens many opportunities for many systems engineering tasks such as modeling, 
monitoring, control, and optimization of the visual quality of products or processes. It is also 
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being applied in a different context to the monitoring and control of the visual appearance of 
flotation froths in mineral processing [4]. 
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Figure 10 Four selected images in the t3-t4 score plot. 

 
 



 

 

Reference 

(1) Marshall, A.D; and Martin R.R. Computer Vision, Models and Inspection, World Scientific 
Publishing: Singapore, 1992. 
(2) Hyper Dictionary. http://www.hyperdictionary.com/search.aspx?define=computer+vision 
(3) Davies, E.R. Machine Vision: Theory, Algorithms, Practicalities, 2nd ed., Academic Press: 
San Diego, 1997. 
(4) Liu, J.; MacGregor, J.F.; Duchesne, C., and Bartolacci, G. Monitoring of Flotation 
Processes using Multiresolutional Multivariate Image Analysis, Minerals Engineering 2004, in 
press. 
(5) Honglu, Y.; MacGregor, J.F.; Haarsma, G.; Bourg, W. Digital Imaging for On-line Monitoring 
and Control of Industrial Snack Food Processes, Industrial & Engineering Chemistry Research, 
2003, 42, 3036. 
(6) Honglu, Y.; MacGregor, J.F. Monitoring Flames in an Industrial Boiler Using Multivariate 
Image Analysis, AIChE Journal 2004, 50, 1474. 
(7) Liu, J.; MacGregor, J.F. On the Extraction of Spectral and Spatial Information for Image 
Analysis, submitted for publication, 2004. 
(8) Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation, 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11, 674. 
(9) Daubechies, I. Ten Lectures on Wavelets, CBMS-NSF Reg. Conf. Series in Applied Math. 
no. 61, SIAM, Philadelphia, 1992. 
(10) Vetterli, M.; Kova�evi�, J. Wavelets and Subband Coding. Prentice Hall: Englewood Cliffs, 
NJ, 1995. 
(11) Bharati, M; Liu, J.; MacGregor, J.F. Image Texture Analysis: Methods and Comparisons, 
Chemometrics and Intelligent Laboratory Systems, 2004, 72, 57. 
(12) Randen, T.; Husoy, J.H. Filtering for texture classification: a comparative study, IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(4), 291. 
(13) Tuceryan, M.; Jain, A.K. Texture Analysis, Handbook of Pattern Recognition and 
Computer Vision (ch. 21), 2nd ed., C.H. Chen, et al. eds., World Scientific Publishing Co.: NJ, 
1998. 
(14) Etdmad, K.; Chellappa, R. Separability-based multiscale basis selection and feature 
extraction for signal and image classification, IEEE Transactions on Image Processing, 1998, 7, 
1453. 
(15) Chang, T.; Kuo, C.C.J. Texture Analysis and Classification with Tree-Structured Wavelet 
Transform, IEEE Transactions on Image Processing, 1993, 2, 429. 
(16) Hotelling, H. Analysis of a complex of statistical variables into principal components, 
Journal of Educational Psychology, 1933, 24, 417. 
(17) Karhunen, K. Uber lineare methoden in der Wahrsccheilichkeitsrechnung, Annales 
Academiae Scientiarum Fennicae, Seried A1: Mathematica-Physica, 1947, 37, 3. 
(18) Loéve, M. Probability Theory, Van Nostrand: New York, 1963. 
(19) Fisher, R.A. The use of multiple measurements in taxonomic problems, Annals of 
Eugenics, 1936, 7, Part II, 179. 
(20) Bell, A.J.; Sejnoski, T.J. An information-maximization approach to blind separation and 
blind deconvolution, Neural Computation, 1995, 7, 1129. 
(21) Friedman, J.H.; Tukey, J.W. A projection pursuit algorithm for exploratory data analysis, 
IEEE Transactions on Computers, 1974, 23, 881. 



 

(22) Moolman, D.W.; Eksteen, J.J.; Aldrich, C.; Van Deventer, J.S.J. The significance of 
flotation froth appearance for machine vision control, International Journal of Mineral 
Processing, 1996, 48, 135. 
(23) Mojsilovi�, A.; Popovi�, M.V.; Rackkov, D.M. On the selection of an optimal wavelet basis 
for texture characterization, IEEE Transactions on Image Processing, 2001, 19, 2043. 
(24) Besse, P.; de Falguerolles, A. Application of resampling methods to the choice of 
dimension in principal component analysis, Computer intensive methods in statistics, W. 
Härdle and L. Simar, eds., Physica-Verlag: Heidelberg, Germany, pp. 167-174, 1993. 
(25) Jackson, J.E. A User’s Guide to Principal Components, Wiley-Interscience: New York, 
1991. 
(26) Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification, Wiley-Interscience: New York, 
2000. 


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



