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ABSTRACT 
 
 This paper is an application of the systematic design approach to the plastics separation systems 
synthesis under uncertainty. The problem is distinguished from the traditional chemical distillation 
processes in that, first there are many separation mechanisms can be used and a combination of them is a 
necessity and second there is a significant variation of feed composition leading to the design of a 
flexible system crucial. The problem is formulated as a stochastic MINLP, which is solved by the 
sample average approximation method proposed previously by the authors. The method can handle large 
uncertainty space and determine appropriate sample sizes needed, therefore making the systems design 
under uncertainty of realistic size possible.  
 
 
INTRODUCTION 

 
Plastics recycling will play an increasingly important role in the design of effective product recovery 

systems. The synthesis of a plastics separation flowsheet is similar to the traditional distillation problems 
in terms of the need to determine the optimal separation sequence and unit parameters. The former is 
still challenging mainly due to the following two issues. First, a plastic mix can be separated by different 
mechanisms (for example, by the difference of density or polarity or surface tension). Therefore there 
are several types of equipment to choose from. Moreover, particles in a batch are not identical due to 
both the variation of particle properties (size, density, charge etc.) and the random performance in the 
separation units, such as the diffusion in the settling process, contacts with bubbles in the froth flotation 
units and entering position in the electrostatic separators. Second, there are many sources of 
uncertainties, such as feed composition, prices etc. In particular, the large variation of the feed 
composition, which can have a significant impact on the process feasibility and product quality, is 
intrinsic in this problem because the feed is usually a mix of various products in varying fractions.  

 
For the first issue, a modeling approach has been developed in Wei and Realff (2003a-c) for many 

separation mechanisms, which takes account of the distribution of particle properties and other random 
factors. The approach embedded the influences of distribution parameters into separation models which 
have a unified form. 

 
To approach the second challenge systematically, the problem is formulated as a stochastic mixed 

integer nonlinear program (sMINLP). 
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 (SMINLP) 

Where y is a vector of binary 0-1 variables denoting the choice of the units or the existence of the 
streams, x is a vector of design variables such as unit sizes, z is a vector of control/state variables, which 
can vary over periods/scenarios, and θ represents a vector of uncertain parameters. The constraint set J 
includes mass balances, unit design/operating models, design/operating specifications and some logical 
constraints. The expected value is often approximated through sample average by Monte Carlo method 
(Shapiro et al 2000), which transforms the stochastic problem into a deterministic one.  
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(SAA-MINLP) 

 
 
The above SAA-MINLP is solved by the Sample Average Approximation method (SAA) 

proposed by Wei and Realff (2004). A major problem in previous solution techniques is the lack of a 
method to determine the confidence of the solution, and the inability to consider a large number of 
uncertain parameters due to the computational complexity of the problem. Therefore, the sample size 
was usually chosen to be sufficiently large subject to the problem can still be solved in a reasonable time 
frame. The sample size could be under or over estimated, resulting in a poor solution quality or 
unnecessarily long computational time. The SAA method determines the sample size based on the 
confidence interval of the optimality gaps, constructed from solutions of replicates of smaller sample 
size problems and a larger sample size problem. The values of the decision variables are found from the 
smaller sample size problems and are fixed in the larger sample size problems, therefore, the scenarios 
of the larger sample size problems are decoupled, which contributes to significant computational 
savings. In the next section, we briefly introduce this algorithm and discuss some computational issues. 
Then the following section presents its application to the plastics separation problem. The last section 
concludes the paper. 

 
 

THE ALGORITHM 
 
Sample average approximation method for stochastic convex MINLPs 

 

The basic idea of the sample average approximation method is to construct confidence intervals 
of the stochastic bounds.  

The upper bound of a stochastic program can be found relatively easily since any feasible 
solution is an upper bound. The confidence interval for the upper bound is simply 
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A widely used lower bounding technique ( Mak et al., 1999; Kleywegt et al 2001; Norkin et al 
1998) is to take advantage of the following fact:  
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Therefore, the average of the minimums of replicated problems is an unbiased estimator of the left hand 
side if the batches of samples are i.i.d. Then the confidence interval for the lower bound is 
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Then, the confidence interval of the optimality gap is 
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When the above bounding techniques are applied to each NLP and MILP of the Outer 

Approximation method (Duran and Grossmann, 1986) for MINLPs, the confidence interval of the 
optimality gap of each NLP and MILP can be found. The sample sizes are increased if the interval of 
any optimality gap is not sufficiently small. The complete algorithm diagram can be found in Wei and 
Realff (2004). It has also been proposed that this rule to increase sample sizes may not be good because 
it is not necessary to make the confidence interval of a very bad solution sufficiently small. A different 
rule to increase the sample sizes, developed in Wei and Realff (2004), was to guarantee that the 
confidence intervals do not overlap. The probability of cutting off the optimal integer solution was also 
calculated, which can be used to adjust the sample sizes and other algorithm parameters.  
  
Nonconvexity issue 

 
The nonconvexities of the plastics separation problem mainly come from the bilinear terms of 

flow rate balances for the units and the mixers, and also the unit models. For the NLP subproblems, a 
global optimization solver, such as BARON (Sahinidis, 2000-2001), should be used, otherwise the 
convergence of Monte Carlo sampling can not be guaranteed and confidence interval of the upper bound 



 

is not valid. Unfortunately, only a local optimization NLP solver, SNOPT, is the only one available to 
the authors. Therefore, a global solution can not be guaranteed.  

 
The nonconvexity issue has a more significantly impact on the MILP part, since the 

linearizations may cut off a significant part of the feasible region. Approaches to generate valid lower 
bounds include solution of a convexified MINLP (Lee and Grossmann, 2001; Kesavan et al, 2004) or 
MILP (Tawarmalani and Sahinidis, 2002, 2004). In this paper, a heuristic strategy (Viswanathan and 
Grossmann, 1990) with the aim of reducing the effect of nonconvexities on generating lower bounds in 
master problems is applied. This approach introduced slack variables in the master problem which has 
the following form  
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Where wp

k
, wq

k are weights that are chosen sufficiently large; Tk={sign(λi
k)} in which λi

k is the 
multiplier associated with the equation hi(x,y)=0.  
 
 
Lagrangian decomposition 

 
The smaller NLP problems have the following form with the discrete variables already fixed.  
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The problem has a block diagonal structure. Solving such a problem as a whole is time-consuming and 
sometimes intractable if the sample size, number of constraints and variables are very large.  

 
However, the special structure of the problem can be exploited to decouple the scenarios and 

solve the problem in an iterative way until the decision variables x solved at each scenario converge to 
the same value. This can be done by first splitting the decision variable x into N variables xi (i=1, …, N) 



 

and then applying Lagrangian Relaxation (Fisher, 1981; Guignard and Kim, 1987) to the copy 
constraints ixx = . This is called Lagrangian Decomposition .  
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The Lagrangian of the above problem is  
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Theoretically, if the problem is convex and the variables are continuous, the original problem is 
equivalent (in terms of the optimal objective value) to solving the following LD problem: 
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However, a duality gap might exist in this case due to the non-convexities of the problem. Therefore the 
solution of LD provides a lower bound to the original problem. Any feasible solution to the original 
problem is an upper bound. Typically a sub-gradient method is used to update the multipliers to. 
 
 
CASE STUDY 
 

In this case study, the flow stream to be processed is a mixture of TV and Computer products. 
The components of a TV or a computer are assumed to be fixed, respectively. However, the fraction of 
TVs or Computers is uncertain, which makes the fraction of each component in the feed stream also a 
random number. The total feed flow rate is fixed at 3600 kg/hr (=1 kg/s) and the fraction of TVs has a 
normal distribution with mean 74% and standard deviation 17%. In TVs, HIPS is the dominant material, 
while in computers, ABS dominates. The data are shown in Table 1. 

 
Table 1 Feed components and fractions (APC report, 2000) 

 
 
The product prices are also uncertain and correlated, which are assumed to have normal distributions, 
with their respective mean and standard deviation and the correlation coefficient matrix shown in Table 
2. 
 
 
 
 

    PE HIPS ABS PPO PC/ABS 
Feed  Total: 3600 kg/ hr, TV (Mean: 74%; STD 17%) + Computer  

For TV    5%  75%  8% 12% 0% Components 
For Computer   0%  5%  57% 36% 2% 



 

 
Table 2 Product price distribution 

 
The following superstructure (Figure 1a,b) is used, which consists of 10 optional units (4 sink-float 
tanks (SF), 2 froth flotation tanks (FF), 2 free-fall electrostatic separators (FE) and 2 drum separators 
(DE)). 
 
 

 
 

Figure 1 a     Phase 1 of plastics separation superstructure 

    PE HIPS ABS PPO PC/ABS 
 Mean 0.4 0.6 0.6 1.5 1.5
 S.T.D. 0.02 0.04 0.04 0.1 0.1

1 0.2 0.2 0.2 0.2
1 0.5 0.3 0.3

1 0.3 0.7
1 0.4

 
 
 
Price ($/kg) 

 
Correlation 
Coefficient 

 1



 

 
 

Figure 1b    Phase 2 of plastics separation superstructure 
 

The problem was solved with AMPL CPLEX 8.1 and SNOPT 5.3-4 on a PC with 2.53GHz CPU 
and 1G memory. All the objective values reported below have the units of million dollars. Starting with 
(0110111111) for the binary variables, the optimal solution was reached at the 2nd iteration 
(0100001100) with an optimal objective value -3.622 (the negative sign is due to the transformation of 
the maximization problem into a minimization problem). One sink-float tank and two free-fall 
electrostatic separators are selected.  

 
Lagrangian decomposition result 

 
The Lagrangian decomposition problems can in general converge within 2 iterations with initial 

multiplier values 0.01. For example, at the first iteration, the lower bound generated by Lagrangian 
decomposition is -3.592 and the upper bound by the heuristic rule is -3.481. At the second iteration, the 
lower bound is -3.524 and the upper bound is -3.500. Since the relative difference of these two values is 
with 2%, the Lagrangian decomposition procedure is considered to have converged. Therefore, despite 
of the nonconvexities in the nonlinear problems, the duality gaps are negligible. If the initial multiplier 
values are increased to 0.1, the number of iterations for the convergence will increase to 6. 

 
As a heuristic rule to find an upper bound, the variables x are fixed at the maximum of the ix̂  

values found in step1 and then the problem is solved again. This heuristic rule can provide a tight upper 
bound and also the values of the decision variables for the larger NLP.  
 



 

Comparison between the uncertain and the average conditions 
 
The deterministic case under the average condition (feed fraction and product prices) is also 

solved and the optimal flowsheet is shown in Figure 2.  
 

 

 
 

Figure 2 Optimal flowsheet of the deterministic case with 95% purity 
 
The optimal objective value is -3.642, which is slightly better than that of the uncertain case, and 

the choices of the units are the same as in the uncertain case (Table 3). There is no difference between 
the uncertain and the average conditions in terms of the choice of units (i.e., flowsheet structure) 
because the variation in the feed composition has no influence on the unit separation efficiencies. 
However, from Table 3 it can be seen that the capacity of the second free-fall electrostatic separator 
designed under the average condition is under-designed.  

 
Table 3 Comparison of the uncertain and average condition 

 Under uncertainty Average condition 
Objective value -3.622 -3.642 
Choice of units (0100001100) (0100001100) 

Capacity of unit 2 1.0 1.0 
Capacity of unit 7 0.758 0.402 
Capacity of unit 8 0.996 0.989 

 
 

SF2 

PE

PC/ABS 

1.0 

0.037

0.963 

0.0 

0.989

FE7

FE8

PPO 

Middling 

ABS 

HIPS 
0.587

0 

0.211

Average condition 
Feed fraction: (0.037, 0.568, 0.207, 0.182, 0.006) 
Purity requirement: 95% 

0.191

0.011 

0.026

0.402

Optimal objective value= − 3.642  

−

+



 

SAA Computational efficiency and the confidence of the solution 
 
The computational time with the SAA method was 5 hours and 45 minutes. The computational 

saving is apparent compared with using a fixed sample size of 2000.  Since at each OA iteration, the 
former requires solving 3400 single-size NLPs/MILPs (assuming the Lagrangian decomposition 
converges with 2 iterations for the first replication and 1 iteration for all other replications) and the latter 
requires solving 8000 single-size NLPs/MILPs (assume the Lagrangian decomposition converges with 2  
iterations) . 

 
Intuitively one would think that such a problem with a 10-dimensional uncertainty space should 

require very large sample sizes. However, our calculation result (Table 4) showed that the problem can 
be solved with small sample sizes (smaller sample size N=100, number of replications M=6, and larger 
sample size N’=2000) but still achieve high solution quality. The confidence intervals (99%) of the 
upper and lower bound at both iterations are less than 0.077, which is only around 2% of the optimal 
objective value. Of course, this result is problem-specific and can not be applied to other cases. 

 
Table 4 Case study result – confidence intervals of optimality gaps 

(with N=100, M=6, N’=2000) 
  Iteration 1 

(0110111111) 
Iteration2 

(0100001100) 
Mean of UB -3.556 -3.660 S-NLP 
Variance of UB 0.0018 0.0023 
Mean of UB -3.545 -3.622 L-NLP 
Variance of UB 0.0891 0.0881 
Mean of UB gap 0.011 0.038  

CI of UB gap  0.0708 0.103 
Mean of LB -3.775 -3.675 S-MILP 
Variance of LB 4.09e-4 4.11e-4 
Mean of LB -3.753 -3.583 L-MILP 
Variance of LB 0.00893 0.00917 
Mean of LB gap 0.022 0.092  
CI of LB gap 0.0576 0.0761 

 
 
CONCLUSION 
 
 This paper is the first systematic approach to solve a plastics separation design problem under 
uncertainty. The problem is formulated as a stochastic MINLP and solved by the previously proposed 
SAA method. The method can not only determine the appropriate sample sizes based on the solution 
quality requirement or vice versa, but also reduce the computational time by decoupling the scenarios 
using solutions from multiple problems with smaller sample size.  
 
 However, a drawback of the current SAA algorithm is its inability to handle nonconvexities. 
Future research includes development of a global optimization algorithm for stochastic nonconvex 
MINLPs .  
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