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ABSTRACT 
 
Optimal control problems in batch distillation involve finding a trajectory for the 
reflux ratio so as to maximize a performance index. Then the controller is asked 
to follow this trajectory in an open loop fashion. It is important to minimize the 
effect of uncertainties in thermodynamic models on the optimal control profiles to 
achieve a better operating performance. The nonlinear parameter estimation 
problem in vapor-liquid equilibrium modeling involves determining the values of 
model parameters, which provide the best fit to experimental data. It was shown 
previously by Gau et al. [Fluid Phase Equilibria, 168, 1-8, (2000)] that, using a 
global optimization procedure based on interval-Newton technique combined with 
interval-branch-and-bound can significantly reduce the error between the 
predicted and experimental data. Using this method, it was also shown that for 
some of the data sets published in DECHEMA, the parameters estimated 
correspond to local minima. The effect of local and global parameters on batch 
distillation optimal control profiles is demonstrated in this work. Since batch 
distillation is a dynamic process, the static (parametric) uncertainties are 
translated into time-dependent uncertainties. The time-dependent changes in 
relative volatility for the two cases are analyzed and represented by Ito 
processes. Next, the optimal control problem is solved using the maximum 
principle and NLP approach. Numerical case studies show that using global 
parameters versus local parameters results in a better product yield and the 
minimum error between the specified purity and the purity that is achieved. 

 
1. INTRODUCTION 

Batch distillation is an important separation process commonly used in 
pharmaceutical, specialty chemical and biochemical industries. Because of its 
unsteady state nature, it is very suitable for high-value, low volume production 
and it has the flexibility to deal with variations in feed stock and product 
specifications under different operating conditions. For batch columns, finding an 



optimum operating policy is a key issue for achieving the most profitable 
operation.   

Optimal reflux policy in batch distillation is a trade-off between constant 
reflux and variable reflux policies, where a trajectory for reflux ratio is obtained so 
as to optimize a certain performance index. The trajectory of reflux ratio is then 
followed by the controller. Diwekar (1992) presented a unified approach to 
solving optimal control problems in batch distillation using an efficient short-cut 
method and an algorithm based on the maximum principle and NLP optimization 
techniques. This article also showed that the different categories of optimal 
control problems essentially involve the solution of the maximum distillate 
problem. However, time-dependent uncertainties were not included in this 
deterministic formulation until recently. For many mixtures encountered in 
pharmaceutical, specialty chemical and biochemical industries, the 
thermodynamic models are not exact or there is not enough data to predict the 
behavior caused by non-idealities. These thermodynamic uncertainties are 
translated into time-dependent uncertainties due to the dynamic nature of batch 
distillation. For the first time, Rico-Ramirez et al. (2003) and Diwekar (2003) 
presented a new approach to include time-dependent uncertainties in 
mathematical formulations of optimal control. The uncertainties in relative 
volatility for ideal and non-ideal mixtures were represented by Ito processes and 
the maximum distillate problem was solved for deterministic and stochastic cases 
(Ulas et al., 2003). It was shown that the stochastic reflux ratio profile improves 
the process performance indices significantly as compared to the reflux ratio 
profile computed by deterministic approaches (Ulas and Diwekar, 2003(a)). For 
example, one case study for a non-ideal system such as ethanol-water showed a 
69% improvement in product yield, with using this stochastic approach (Ulas and 
Diwekar, 2003(a); Ulas and Diwekar2003(b)). This method also allowed including 
uncertainties in binary interaction parameters such as UNIFAC and it has been 
found that the inclusion of binary interaction parameter uncertainties increases 
the discrepancy between the stochastic and deterministic solution. Therefore it is 
important to minimize the effect of thermodynamic uncertainties to obtain optimal 
reflux ratio profiles and to maintain optimal operation.   

Thermodynamic uncertainties are also due to nonlinear parameter 
estimation in vapor-liquid equilibrium modeling, when a set of experimental 
vapor-liquid equilibrium data is represented by a correlative model and the model 
parameters are estimated based on a least squares or maximum likelihood 
analysis. In most of the cases, the objective function in nonlinear parameter 
estimation problems is non-convex and may have multiple local optima. 
Therefore local optimization techniques cannot be employed since they do not 
guarantee to converge to a global optimum. Gau et al. (2000), presented an 
alternative method for nonlinear parameter estimation problem based on an 
interval-Newton technique and interval-branch-and-bound, which provides the 
guarantee of global optimality in parameter estimation. It was shown that for 
some data sets published in DECHEMA VLE Data Collection (Gmehling and 



Onken, 1977-1990), the parameters predicted for an activity coefficient model 
such as Wilson model correspond to local optima and globally optimal parameter 
values were reliably determined by the interval-Newton generalized bisection 
algorithm (IN/GB).  

In this paper, we demonstrate how the batch distillation optimal control 
profiles are affected by using the globally optimal parameter values predicted by 
IN/GB, versus the locally optimal parameters published in DECHEMA. Since 
batch distillation is a dynamic process, the uncertainties in model parameters are 
translated into time-dependent uncertainties. Two different time-dependent 
relative volatility profiles are obtained using global and local parameter values for 
Wilson model. These profiles are statistically analyzed and represented by Ito 
processes. Finally, batch distillation optimal control problem is solved for three 
cases: the stochastic global case (relative volatility is represented by an Ito 
process, obtained from global parameters), the stochastic local case (relative 
volatility is represented by an Ito process, obtained from local parameters) and 
the deterministic case (relative volatility is taken as constant). The result of our 
case studies show that the stochastic global reflux ratio profile results in the 
highest product yield and the product purity is significantly closer to the specified 
purity for optimal control.  

 
2. UNCERTAINTY QUANTIFICATION 
 

For the case studies presented in this paper, Wilson model is used to 
predict the vapor-liquid equilibrium in rigorous simulations of batch distillation 
operation. The expressions for the estimation of liquid phase activity coefficients 
in Wilson model for a binary system are:  
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The equations for binary parameters 12 and 21 are:  
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where 1 and 2 are the pure component liquid volumes, T is the system 
temperature and 1 and 2 are the energy parameters that need to be estimated.  



 

These energy parameters are estimated by minimizing the relative 
squares of error between the activity coefficients determined from experimental 
data and activity coefficients predicted by Wilson method. The objective function 
is given below: 
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Gau et al. (2000) showed that the energy parameters published in 
DECHEMA for some data sets were in fact local solutions to this problem and 
new set of globally optimum energy parameters were presented for binary 
systems of (a)water(1)-formic acid(2), (b)tert-butanol(1)-n-butanol(2), (c)water(1)-
1,2,-ethanediol(2) and (d)benzene(1)-hexafluorobenzene(2).  

In this paper, we consider the binary systems of tert-butanol(1)-n-
butanol(2) and benzene(1)-hexafluorobenzene(2) for our case studies to 
demonstrate the effect of globally and locally optimum energy parameters, on 
optimum control profiles in batch distillation. The results of parameter estimation 
presented by Gau et al. (2000) are summarized below in Table 1 and 2, for the 
binary systems of tert-butanol(1)-n-butanol(2) and benzene(1)-
hexafluorobenzene(2), respectively. 

 
 
Table 1: Results of parameter estimation for tert-butanol(1)-n-butanol(2)  

(Gau et al. (2000) 
DECHEMA Gau et al. (2000) – IN/GB

DECHEMA 
Volume: 

page 

No. of 
data 

points 
P(mmHg)

1 2 
Objective 
function , 

J( ) 
1 2 

Objective 
function, 

J( ) 
2b:156 9 100 951 -602 0.0136 -568 745 0.0103 
2b:157 9 300 1068 -638 0.0158 -525 626 0.0130 
2b:158 9 500 901 -594 0.0097 -718 1265 0.0069 
2b:159 9 700 801 -561 0.0174 -734 1318 0.0137 
2f:151 14 760 848 -606 0.0333 -865 2420 0.0111 
2f:152 17 760 153 -203 0.1300 -793 1757 0.1164 

 

Table 2: Results of parameter estimation for benzene(1)-hexafluorobanzene(2)  
(Gau et al. (2000) 

DECHEMA Gau et al. (2000) – IN/GB
DECHEMA 

Volume: 
page 

No. of 
data 

points 
P(mmHg)

1 2 
Objective 
function , 

J( ) 
1 2 

Objective 
function, 

J( ) 
7:234 17 300 344 -347 0.0566 -432 993 0.0149 

 



 
 
2.1 Static Uncertainties (Uncertainty Factors) 
 
 A statistical analysis was performed on these six data sets to quantify the 
uncertainties associated with globally and locally optimum energy parameters. 
For uncertainty quantification, we can define uncertainty factors as the ratio of 
experimental activity coefficients to activity coefficients computed from Wilson 
model: 
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where the experimental activity coefficients can be calculated from: 
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The probability density estimate of the uncertainty factors for tert-butanol (1)-n-
butanol (2) and benzene (1)-hexafluorobenzene (2) are given in Figures 1 and 2. 
From the figure, it can be seen that the expected values of uncertainty factors are 
closer to 1 and the variance is decreased, when the activity coefficients are 
predicted using the globally optimal energy parameter values reported by Gau et 
al. (2000).  

           
Figure 1: Probability density estimate of uncertainty factors for six experimental data 
sets of tert-butanol(1)-n-butanol(2) system for globally optimal energy parameters 
predicted by Gau et al.(2000) using IN/GB method and locally optimal energy parameter 
values published in DECHEMA VLE Data Collection.  
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2.2 Time-Dependent Uncertainties 
 

After establishing statistically that the Wilson model with the global 
parameters show less deviation from experimental data, the next step is to 
determine the time-dependent uncertainties. During batch distillation operation, 
the relative volatility of the key component changes with respect to time and each 
plate in the column. This dynamic behavior of relative volatility can be 
represented by Ito processes. This was shown previously for systems of 
pentane-hexane (ideal) and ethanol-water (non-ideal) (Rico-Ramirez et al., 2003; 
Ulas and Diwekar, 2003a,b). 
 
System I: tert-butanol(1)-n-butanol(2) 
 

If we take the rigorous model in batch distillation as a proxy for real 
experiments and simulate the system tert-butanol(1)-n-butanol(2) using the 
Wilson model with global and local parameters, two different time-dependent 
profiles of relative volatility are obtained which are shown in Figures 3(a) and 
4(a). To generate these profiles, the global and local parameters obtained from 
data set 6, shown in Table 1, were used.  

 

When the local parameters are used in the Wilson model, the relative 
volatility profile shown in Figure 4(a) is obtained, which is similar to the behavior 
of an ideal system, such as pentane-hexane (Rico-Ramirez et al., 2003, Ulas et 
al., 2003).  

However, experimental vapor-liquid equilibrium studies show that tert-
butanol(1)- n-butanol(2) system shows negative deviations from an ideal mixture 
and there are associations present in the mixture (Quitzsch et al., 1969). The 
effect of these associations is only captured when global parameters are used in 
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Figure 2: Probability density estimate of uncertainty factors for benzene(1)-
hexafluorobenzene(2) system for globally optimal energy parameters predicted by Gau et 
al.(2000) using IN/GB method and locally optimal energy parameter values published in 
DECHEMA VLE Data Collection.



the Wilson model. The relative volatility profile shown in Figure 3(a) is obtained 
using the global parameters, which is shows behavior between an ideal system 
like pentane-hexane and a non-ideal system like ethanol water, presented by 
Ulas and Diwekar (2003a,b). 

 
Figures 3(b) and 4(b), show the sample paths of Ito processes that are 

used to represent the time dependent changes in relative volatility for the tert-
butanol(1)-n-butanol(2) system when the global and local parameters are used in 
Wilson model, respectively.   
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Figure 3(a): The change of relative 
volatility with respect to time and plate in 
a batch column from a rigorous simulation 
using Wilson model global parameters   
 

Figure 3(b): Sample paths of a 
simple mean reverting process with 
66% confidence intervals   

Figure 4(a): The change of relative 
volatility with respect to time and plate in 
a batch column from a rigorous simulation 
using Wilson model local parameters   

Figure 4(b): Sample paths of a geometric 
Brownian motion with 66% confidence 
intervals  
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When the global parameters are used, the time-dependent uncertainties 
for this system can best be described using a simple mean reverting process, 
which is given in equation (9): 
   dzdtd σααηα +−= )(     (9) 
 
where dz is the increment of a Wiener process. This increment can be 
represented in terms of time as: 

 
dtdz tε=      (10) 

  

In this equation εt is a random number drawn from a normal distribution 
with mean µ=0 and a standard deviation σ =1. The parameters η , α  and σ  can 
be found using statistical analysis of the rigorous simulation data for relative 
volatility. The parameters were found as 7.4=η , 5.3=α  and 1.1=σ  with a R2 
value of 0.95. 

When the local parameters are used, statistical analysis shows that this 
system can be best represented by a geometric Brownian motion, which was 
also used for the ideal system of pentane-hexane (Rico-Ramirez et al., 2003; 
Diwekar, 2003). The general equation for the geometric Brownian motion is given 
below: 

dzdtd σαβαα +=     (11) 
  
 As a result of statistical analysis, the constants β and σ were found as 
β=-0.128 and σ=0.03 with an R2=0.90.  
 
System II: benzene(1)-hexafluorobenzene(2) 
  

For the second binary system, benzene(1)-hexafluorobenzene(2), the 
relative volatility profiles for global and local parameters, obtained using a 
rigorous model as a proxy for experiments is shown in Figures 5(a) and 6(a). The 
relative volatilities obtained using locally optimal parameters in Wilson model, are 
lower that the relative volatilities obtained using globally optimal parameters. 
Both of these profiles were represented by a simple mean reverting process, 
shown in Equation 9. For this binary system the use of global versus local 
parameters in Wilson model affects the constant coefficients of Ito process 
representation.  

When the globally optimal parameters are used in Wilson model, the 
constant coefficients of the mean reverting process are: 71.0=α , 03.0=η , 

018.0=σ  with an R2 value of 0.91. When the locally optimal parameters are 
used, the constant coefficients are: 08.1=α , 06.1=η , 012.0=σ  with and R2 value 
of 0.95.  
 



 
 
 
 
 
 

 
 
 
 
 
 
  
3. OPTIMAL CONTROL PROFILES FOR LOCAL AND GLOBAL 

PARAMETERS 
 

After quantification of uncertainties for the thermodynamic system that is 
being separated by batch distillation, the next step is to find an optimum 
operating policy. Maximum distillate problem in batch distillation is an optimum 
control problem where the optimal reflux ratio profile that maximizes the distillate 
for a specified purity and time is computed. Rico-Ramirez et al. (2003) and 
Diwekar et al. (2003) presented a stochastic formulation of the maximum 
distillate problem, where the time-dependent uncertainties in relative volatility are 
included in the formulation. It was shown that the uncertainties in relative volatility 
affect one of the state variables and this state variable can also be represented 
by an Ito process of the same form. Ulas and Diwekar (2003b) solved the 
maximum distillate problem for the stochastic case, where the time-dependent 
uncertainties in relative volatility were described using geometric Brownian 
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Figure 5(a): The change of relative 
volatility with respect to time and plate in 
a batch column from a rigorous simulation 
using Wilson model global parameters   

Figure 5(b): Sample paths of a simple 
mean reverting process with 66% 
confidence intervals   

Figure 6(a): The change of relative 
volatility with respect to time and plate in 
a batch column from a rigorous simulation 
using Wilson model local parameters   

Figure 6(b): Sample paths of a simple 
mean reverting process with 66% 
confidence intervals  



motion and geometric mean reverting process. The next subsection analyzes the 
stochastic case where the state variables are described using a mean reverting 
process, such as the cases for tert-butanol(1)-n-butanol(2) system when the 
global parameters are used in the Wilson model and the benzene(1)-
hexafluorobenzene(2) system.  

  
3.1 Derivation of stochastic optimal reflux ratio profile for a mean reverting 
process   
 

It was shown in Section 2.2 that the time-dependent uncertainties in 
relative volatility can be represented by a mean reverting process for benzene(1)-
hexafluorobenzene(2) system and for the tert-butanol(1)-n-butanol(2) system, 
when the globally optimal energy parameters are used in Wilson equation.  
Whereas, when local parameters are used, geometric Brownian motion best 
represents the time-dependent uncertainties in relative volatility for tert-
butanol(1)-n-butanol(2). Using Hengestebeck-Geddes equation and Ito’s Lemma, 
Rico-Ramirez et al. (2003) showed that when the time-dependent uncertainties in 
relative volatility are represented by a geometric Brownian motion, this affects 
one of the state variables and this state variable also takes the form of geometric 
Brownian motion. This formulation is used here for the case of local parameters 
for tert-butanol(1)-n-butanol(2).  Ulas and Diwekar(2003b) showed that this is 
true for a general case which means that the state variable takes the form of the 
same Ito process that is used to represent relative volatility.  

However, for global parameters we need to derive the optimality 
conditions for the reflux ratio profile, when the state variables are represented by 
a mean reverting process. This formulation is given below:  

The maximum distillate problem is formulated in batch distillation as: 
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 As mentioned above when the relative volatility is a mean reverting 
process as shown in Equation(9), the behavior of relative volatility affects the 
state variable 2x . The equation for the state variable x2 becomes: 
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The Hamiltonian function, which should be maximized is: 
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The adjoint equations are: 
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  In this analytical solution it can be seen that the adjoint equations are not 
affected by the behavior of state variable x2, since the additional term 2dt is not 
dependent on x2, which is different from the solution obtained when the state 
variable is represented by a geometric Brownian motion. The solution algorithm 
proposed by Diwekar (1992) can be used to solve this problem with this 
representation. The column model used in this algorithm is the short-cut model, 
which introduces quasi-steady state approximation to some of the state 
variables, thereby reducing the dimensionality of the problem. This algorithm 
combines the maximum principle and non-linear programming (NLP) techniques. 
It is an efficient technique which avoids the solution of the two-point boundary 
value problem for the pure maximum principle formulation or and the solution of 
partial differential equations for the pure dynamic programming formulation. 
Numerical results are given in the following subsection.  

  
3.2 Global and Local Solution for Optimal Reflux Profile 
 

 Optimal reflux ratio profiles were computed for three cases for tert-
butanol (1)/n-butanol (2) and benzene (1)-hexafluorobenzene (2) systems: 

I. Stochastic-global case: uncertainties in relative volatility are represented 
by the Ito process obtained by using globally optimal energy parameters in 



Wilson model and the maximum distillate problem is solved for the 
stochastic case using combined maximum principle-NLP technique.  

II. Stochastic-local case: uncertainties in relative volatility are represented by 
the Ito process obtained by using local parameters in Wilson model and 
the maximum distillate problem is solved for the stochastic case using 
combined maximum principle-NLP technique.  

III. Deterministic case: relative volatility is taken as constant and the 
maximum distillate problem is solved for the deterministic case using 
combined maximum principle-NLP technique.     

 
Case Study I: tert-butanol(1)-n-butanol(2) system 
 

In this numerical case study a system of tert-butanol(1)-n-butanol(2) was 
separated in a batch column where the operation and design related parameters 
were chosen as:   

Specified purity: xD(1)=0.94 
Number of plates: 10 
Amount of feed: 100 kmol 
Feed composition: xF(1) = 0.4,   xF(2) = 0.6; 
Vapor rate: 60 kmol/h 
Pressure: 1 atm 
Batch time: 2 h  

For the deterministic case the relative volatility was taken as constant at 
3.035, which is corresponds to the initial value of the relative volatility profile from 
the rigorous model, when the global parameters are used. This algorithm was 
implemented in MultiBatchDS (Diwekar, 1996). The reflux ratio profiles obtained 
for the three cases are given in Figure 7.  

                     
Figure 7: Optimal reflux ratio profiles for the stochastic-global, stochastic-local and 
deterministic cases 
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Case Study II: benzene(1)-hexafluorobenzene(2) system 
 

For this case study a system of benzene(1)-hexafluorobenzene(2) was 
separated in a batch column where the operation and design related parameters 
were chosen as:   

Specified purity: xD(1)=0.70 
Number of plates: 15 
Amount of feed: 100 (k-mol) 
Feed composition: xF(1) = 0.55,   xF(2) = 0.45; 
Vapor rate: 60 kmol/h 
Pressure: 300 mmHg 
Batch time: 2 h 

 For the deterministic case the relative volatility was taken as constant at 
1.12. The reflux ratio profiles obtained for the three cases are given in Figure 8.  

 
Figure 8: Optimal reflux ratio profiles for the stochastic-global, stochastic-local and 
deterministic cases 
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and determine which reflux ratio profile yields the maximum performance for the 
batch column. The rigorous model includes the hold-up effects for the batch 
column and involves the solution of several differential equations, representing 
the column dynamics. 

 The results obtained from the rigorous model are shown in Tables 3 and 
4 for the tert-butanol(1)-n-butanol(2) system. The same operation and design 
related parameters specified in optimal reflux computations were used for the 
batch column. In Table 3, the results for distillate purity from the rigorous model 
are presented. Recall that the optimal control problem was solved for a purity 
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constraint of 94%. This means that a purity of 94% should be obtained, when we 
use a reflux ratio profile that is obtained by a thermodynamic model where the 
effects of uncertainties are minimized. As it can be seen from the results in Table 
3, the reflux ratio profile obtained for the stochastic global case results in a purity 
of 96.13%, which is closest to 94%. The % error between the specified purity and 
the purity obtained increases as we proceed to stochastic-local and deterministic 
cases due to the effect of thermodynamic uncertainties: both static(parametric) 
and time-dependent.   

 Furthermore, for the stochastic global case, the highest yield is obtained 
as compared to stochastic-local and deterministic cases, which can be seen in 
Table 3. Similarly, as we proceed to stochastic local and deterministic cases, the 
distillate yield decreases.  

 

Table 3: Results for distillate purity from the rigorous model for tert-butanol(1)-n-
butanol(2) system 

Specified purity for optimal control 0.94 
Stochastic-global optimal reflux ratio profile 0.961 
Stochastic-local optimal reflux ratio profile 0.978 
Deterministic reflux ratio profile 0.993 
% error in global 2.26% 
% error in local 4.03% 
% error in deterministic 5.65% 

 
 
 
Table 4: Results for amount of distillate from the rigorous model for tert-butanol(1)-n-
butanol(2) system 

Global optimal reflux ratio profile 38.73 (k-mol) 
Local optimal reflux ratio profile 37.80 (k-mol) 
Deterministic reflux ratio profile 36.23 (k-mol) 

 
 
 
Table 5: Results for distillate purity from the rigorous model for benzene(1)-
hexafluorobenzene(2) system 

Specified purity for optimal control 0.70 
Stochastic-global optimal reflux ratio profile 0.763 
Stochastic-local optimal reflux ratio profile 0.841 
Deterministic reflux ratio profile 0.769 
% error in global 8.96% 
% error in local 20.08% 
% error in deterministic 9.79% 



 
 
Table 6: Results for amount of distillate from the rigorous model for benzene(1)-
hexafluorobenzene(2) system 
 

Global optimal reflux ratio profile 18.64   (k-mol) 
Local optimal reflux ratio profile 7.18    (k-mol) 
Deterministic reflux ratio profile 17.86  (k-mol)  

 

In Tables 5 and 6, the results obtained from the rigorous model for the 
benzene(1)-hexafluorobenzene(2) systems are presented. Table 5 shows the 
results for distillate purity for the three cases. We can see that the purity that is 
closest to the specified purity of 70% is obtained when the stochastic global 
reflux ratio profile is used. The stochastic local reflux profile gives the highest 
error in purity about 20%. This is due to the fact that the local reflux ratio profile is 
obtained using a relative volatility profile that is lower than both the stochastic 
global and deterministic profiles.  

In Table 6, the results for product yield (distillate) are shown. The highest 
amount of distillate is obtained when the stochastic global reflux ratio profile is 
used. The local profile gives a product yield that is significantly lower (61%) than 
the global profile.  

The results from this case study validate the fact that if a global 
optimization method such as interval-Newton-interval-branch-and-bound is used 
in parameter estimation step, for cases where the local optimizer fails to find the 
global minimum, the effect of uncertainties on the optimal reflux ratio profiles may 
be reduced to a great extent and a better operating performance is achieved.  

5. CONCLUSION 

In this paper, the effect of thermodynamic uncertainties due to nonlinear 
parameter estimation problem in vapor-liquid equilibrium modeling, on the batch 
distillation optimal control profiles are presented. When a global optimization 
method such as IN/GB method is used for parameter estimation, the 
thermodynamic uncertainties (static) are significantly reduced relative to the case 
in which only a local minimum is found in the parameter estimation problem. The 
uncertainties were quantified in terms of uncertainty factors which are defined as 
the ratio between the experimental and predicted activity coefficients for a 
system of tert-butanol(1)-n-butanol(2) and benzene(1)-hexafluorobenzene(2). 
The variance of uncertainty factors is reduced significantly and the expected 
values are closer to 1.  

The dynamic nature of batch distillation translates the static uncertainties 
to time-dependent uncertainties. Two different relative volatility profiles are 
obtained for when a rigorous model of batch distillation with global and local 



parameters is used to simulate the two binary systems mentioned above. For 
tert-butanol(1)-n-butanol(2) it can be concluded from the results that when local 
parameters are used, the relative volatility profile cannot capture the effect of 
associations in this mixture and deviations from non-ideality and it is similar to 
the relative volatility profile for an ideal system (pentane-hexane). Two different 
Ito processes are used to represent the time-dependent uncertainties in relative 
volatility for local and global parameters. Geometric Brownian motion is used for 
the profile obtained using local parameters and simple mean reverting process is 
used for the global parameters. For the benzene(1)-hexafluorobenzene(2) 
system, the relative volatility profiles are similar for global and local parameters. 
However, when the local parameters are used in Wilson model, the relative 
volatility at each plate and time is lower than the profile obtained by using global 
parameters. The uncertainties in relative volatility are represented by a mean 
reverting process for both the global and local parameters, with different constant 
coefficients. 

 When the optimal control problem is solved for the three cases, 
stochastic-global case, where the Ito process representation obtained from global 
parameters is used for relative volatility, stochastic-local case, where the Ito 
process representation obtained from local parameters is used for relative 
volatility and deterministic case where the relative volatility is taken as constant, 
three different reflux ratio profiles are obtained. When these reflux ratio profiles 
are tested in a rigorous model, the stochastic-global profile gives the highest 
yield and a purity that is closest to the purity constraint on the distillate for the 
optimal control problem. Especially, the yield obtained from the stochastic-global 
reflux profile for benzene (1)-hexafluorobenzene (2) is significantly higher, due to 
the non-ideal nature of this binary system.  

 From these results it can be concluded that an optimum operating policy 
using optimal control in batch distillation can only be obtained if the effect of 
thermodynamic uncertainties are minimized. The effect of uncertainties due to 
the usage of local methods during the parameter estimation step in VLE 
modeling is propagated in time during batch operation and the optimal reflux 
profile obtained results in a lower product yield and a purity that is significantly 
different from the specified purity on the distillate.  

 
NOMENCLATURE 
 
F = amount of feed [mol] 
H = Hamiltonian 
J = objective function for the nonlinear parameter estimation  
Pexp = total pressure  
Pi

vap

 = vapor pressure  
Rt = the control variable vector, reflux ratio (function of time) 
T = total batch time [h]  



UF = uncertainty factor 
V = molar boilup rate [mol h-1]  
x1 = state variable representing the quantity of charge remaining in still B [mol] 
x2 = state variable representing the composition of the key component in the still 
at the time t, xB

(1) [mole fraction] 
xD

(1) = composition of the key component in distillate [mole fraction] 
xF

(1) = composition of the key component in feed [mole fraction]   
xi,exp = composition of the liquid phase   
yi,exp = composition of the vapor phase 
z1, z2 = adjoint variables 
 
Greek symbols 
 
 = relative volatility  

α  = “normal” level of , the level which  tends to revert 
 = drift parameter 
i = activity coefficient 
i,calc = activity coefficient determined from Wilson model 
i,exp = activity coefficient determined from experimental data 
 = speed of reversion 
ij = energy parameters of Wilson model 
ij = binary interaction parameters of Wilson model 
 = standard deviation 
i = pure component liquid volume 
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