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Abstract

Continuous time hybrid systems have become the modeling framework of choice for a wide
variety of applications that require detailed dynamic models with embedded discontinuities. In
general, these time dependent, nonlinear models exhibit model switching and state jumps as a
consequence of both time and state dependent events [1]. There exist great safety, econom-
ical and environmental incentives to study the global optimization of hybrid systems as many
practical problems can be formulated as dynamic optimization problems with hybrid systems
embedded, for example, formal safety verification problems, and synthesis problems requiring
optimal operating policies. For safety critical applications, it is crucial to locate the global solution
as it often represents a counter-example to a safety specification.

A deterministic branch and bound framework has recently been developed for the global
optimization of linear hybrid systems with fixed transition times and a fixed sequence of modes
[2]. This work has been extended to determine the optimal mode sequence using a decomposi-
tion approach [3]. In this presentation, we address a key issue in this approach: the problem of
bounding the states of a linear hybrid system with fixed transition times. It is shown via an illus-
trative example that a simple decomposition algorithm produces weak bounds which deteriorate
as the number of epochs increases. To address this issue, a novel algorithm is proposed, based
on solving families of relaxed linear programming problems, which allows the incorporation of
additional constraints derived from physical insight. The remainder of this record will describe
this in detail.

In addition, we will present recent progress toward handling varying transition times
within a global optimization setting. The control parameterization enhancing transform (CPET)
[4, 5] is used to transform the problem into one with fixed transition times. The cost of doing
so is reflected by the insertion of additional nonlinearities into the resulting embedded hybrid
system. To deal with these nonlinearities, a method for the global optimization of nonlinear hybrid
systems with fixed transition times and a varying sequence of modes will be presented, based
on a nonconvex outer approximation framework [6] utilizing novel convex relaxation techniques.
Due to space constraints, this material will not be included in this presentation record; a journal
article is currently in preparation.

1 Introduction

Many modern, general methods for deterministic global optimization in Euclidean spaces rely
on the notion of a convex relaxation of a nonconvex function [7]. This is a convex function
which underestimates a nonconvex function on the set of interest. The convex programs that
result from convex relaxation of all nonconvex objective and constraint functions in a problem
formulation can (in principle) be solved to guaranteed global optimality, which can then be used
to generate rigorous lower bounds on the nonconvex problem for a branch and bound (B&B)
algorithm [8].



Recently, a convexity theory has been developed that enables well known symbolic con-
vex relaxations on Euclidean spaces [7, 9] to be harnessed in the construction of convex relax-
ations of general, nonconvex Bolza type functionals subject to an embedded linear time varying
(LTV) hybrid system where the transition times are fixed, and the sequence of modes, Tµ, is
known [2]. The construction of a set enclosing the image of the parameter space under the
solution of the hybrid system, X (i), is critical for obtaining tight (accurate) convex relaxations of
the participating functionals. Note that X (i) represents the state bounds for the embedded hy-
brid system for all values of the parameters. The better the estimate of X (i) is, the tighter the
relaxations obtained. Consequently, tighter lower bounds are obtained, increasing the efficiency
of the global optimization algorithm.

In [3], a mixed-integer reformulation is proposed to deal with the problem when Tµ is al-
lowed to vary and becomes an optimization parameter. This results in a nonconvex mixed-integer
nonlinear programming (MINLP) problem. In particular, auxiliary optimization parameters, Z, are
introduced to represent the initial conditions for each epoch. In this case, X (i) becomes a larger
set containing the image of the parameter space under the solution of the hybrid system for all
possible Tµ, and the bounds on Z are obtained from estimating X (i) at the time events, i.e., the
state bounds at the beginning of each epoch.

For analogous reasons to those presented above, it is very desirable to obtain tight
bounds for Z, as these bounds are needed to construct a convex relaxation of the nonconvex
MINLP. Although the exact state bounds at the beginning of each epoch can be obtained with an
explicit enumeration of all possible Tµ, the cost of doing so clearly becomes prohibitive (increases
exponentially) as the number of epochs increases. To deal with this problem, a decomposition
algorithm for estimating valid state bounds was proposed in [3]. In the remainder of this record,
we formally present the decomposition algorithm, and show that it produces weak bounds which
deteriorate as the number of epochs increases. To address this issue, a novel algorithm is
proposed to obtain tighter state bounds, based on solving a family of relaxations of mixed-integer
linear programming (MILP) problems as LP problems.

2 LTV Hybrid Systems

The modeling framework of [1, 2] is used to define the LTV hybrid system of interest. The time
horizon is partitioned into contiguous intervals called epochs. We define a hybrid time trajectory,
Tτ , as a finite sequence of epochs {Ii} terminating with epoch Ine

, where ne is fixed, and is
the total number of epochs. Each epoch is a closed time interval Ii = [σi, τi] ⊂ R, σi = τi−1

for i = 2, . . . , ne, σ1 ≤ τ1, and τi−1 ≤ τi for all i = 2, . . . , ne. For epoch Ii, the system evolves
continuously in time if σi < τi, and it evolves discretely by making an instantaneous transition if
σi = τi. The continuous state subsystems are called modes and the corresponding sequence of
modes for Tτ is called the hybrid mode trajectory, Tµ. At the end of epoch Ii, a transition is made
from the predecessor mode in Ii to a successor mode in epoch Ii+1.

Definition 1. The LTV ODE hybrid system of interest is defined by the following.



1. An index set of modes potentially visited along Tµ, M = {1, . . . , nm}, and a fixed Tτ

with given time events (i.e., explicit transition times) σ1, τ1, τ2, . . . , τne
. It is clear that Tµ =

{mi}, where mi ∈ M . Henceforth, the superscript (m) will refer to any mode in M , while
superscript (mi) will refer to the active mode in epoch Ii;

2. An invariant structure system where the number of continuous state variables is constant
between modes, V = (x(p, Tµ, t),p), where p ∈ P ⊂ R

np, and x(p, Tµ, t) ∈ R
nx for all

(p, Tµ, t) ∈ P × Mne × Ii, i = 1, . . . , ne;

3. The LTV ODE system for each mode m ∈ M , which is given by

ẋ(p, Tµ, t) = A(m)(t)x(p, Tµ, t) + B(m)(t)p + q(m)(t), (1)

where A(m)(t) is continuous on [σ1, τne
], B(m)(t) and q(m)(t) are piecewise continuous on

[σ1, τne
] and defined at any point of discontinuity, for all m ∈ M ;

4. The transition conditions for the transitions between epochs Ii and Ii+1, i = 1, . . . , ne − 1,
which are explicit time events:

L(mi) := (t = τi), (2)

indicating the transition from mode mi in epoch Ii to mode mi+1 in epoch Ii+1 at time τi;

5. The system of transition functions, which is given by

x(p, Tµ, σi+1) = Dix(p, Tµ, τi) + Eip + ki,∀ i = 1, . . . , ne − 1, (3)

for the transition from mode mi in epoch Ii to mode mi+1 in epoch Ii+1; and

6. A given initial condition for mode m1,

x(p, Tµ, σ1) = E0p + k0. (4)

Definition 2. Let P be a nonempty compact convex subset of R
np. Define the following sets for

all i = 1, . . . , ne where t denotes fixed t:

X (i)(t) ≡
{

x(p, Tµ, t) | p ∈ P, Tµ ∈ Mne , t ∈ Ii

}

, (5)

X (i) ≡
⋃

t∈Ii

X (i)(t). (6)

3 The Decomposition Algorithm

Consider the following dynamic system,

ẋ(p, z̃, t) = A(m)(t)x(p, z̃, t) + B(m)(t)p + q(m)(t), (7)

x(p, z̃, σ) = z̃, (8)

for some m ∈ M , where σ < τ, t ∈ T ≡ [σ, τ ], p ∈ P ⊂ R
np , z̃ ∈ Z̃ ⊆ R

nx . Define the following
set:

X a(t) ≡
{

x(p, z̃, t) | p ∈ P, z̃ ∈ Z̃, t ∈ T
}

. (9)



Theorem 1. [10] Given P ≡ [pL,pU ] and Z̃ ≡ [z̃L, z̃U ], the set X a(t) ≡ [xL(t),xU(t)] for t ∈ T can
be calculated pointwise in time from the following interval equation,

[x](t) = M(t)[w] + n(t), (10)

where w = (p, z̃), w ∈ W ≡ [wL,wU ], wL = (pL, z̃L), wU = (pU , z̃U), and M(t) and n(t) are
given by the solution of the following LTV system,

Ṁ(t) = A(m)(t)M(t) + H(m)(t), (11)

ṅ(t) = A(m)(t)n(t) + q(m)(t), (12)

M(σ) = L, (13)

n(σ) = 0, (14)

where H(m)(t) = [B(m)(t) 0], L = [0 I], and I is the identity matrix of rank nx.

Remark 1. The functional form of the solution of the LTV system is affine in the parameters w,

x(w, t) = M(t)w + n(t). (15)

The entries in M(t) are clearly the parametric sensitivities of the dynamic system, ∂x
∂w

(t). Hence,
(11) and (13) are simply the forward sensitivity equations of the embedded dynamic system in
(7) and (8).

Remark 2. The bounds xL(t) and xU(t) from (10) are exact in the following sense. For any
i ∈ {1, . . . , nx}, and any t ∈ T , the following relationship holds,

xi(w
∗, t) = xL

i (t) ≤ xi(w, t) ≤ xU
i (t) = xi(w

†, t), ∀ w ∈ W, (16)

for some w∗,w† ∈ W .

From Remark 2, we know that exact bounds for x(τ) can be constructed for each sub-
problem in the mixed-integer reformulation presented in [3] once the bounds for z̃ are known.
This suggests the following decomposition algorithm for estimating the bounds on Z ∈ Z, where
zi represents the initial conditions for epoch Ii.

Algorithm 1 (A1).

1. Initialize i=1.

2. For m = 1 to nm do:

(a) Integrate the following system from σ1 to τ1, and store M
(m)
1 (τ1) and n

(m)
1 (τ1).

Ṁ
(m)
1 (t) = A(m)(t)M

(m)
1 (t) + B(m)(t), (17)

ṅ
(m)
1 (t) = A(m)(t)n

(m)
1 (t) + q(m)(t), (18)

M
(m)
1 (σ1) = E0, (19)

n
(m)
1 (σ1) = k0. (20)



(b) Calculate and store [x(m)L(σ2),x(m)U(σ2)] from

[x(m)](σ2) =
(

D1M
(m)
1 (τ1) + E1

)

[p] + D1n
(m)
1 (τ1) + k1. (21)

3. For j = 1 to nx do:

(a) Calculate and store the jth element of [zL
i+1, z

U
i+1] from

(zL
i+1)j = min

m∈M
x

(m)
j

L
(σi+1), (zU

i+1)j = max
m∈M

x
(m)
j

U
(σi+1). (22)

4. For i = 2 to (ne − 1) do:

(a) For m = 1 to nm do:

i. Integrate the system (11), (12), (13) and (14) from σ = σi to τ = τi, and store
M

(m)
i (τi) ← M(τ) and n

(m)
i (τi) ← n(τ).

ii. Calculate and store [x(m)L(σi+1), x(m)U(σi+1)] from

[x(m)](σi+1) =
(

DiM
(m)
i (τi) + Li

)

[w] + Din
(m)
i (τi) + ki. (23)

where wL = (pL, zL
i ), wU = (pU , zU

i ), and Li = [Ei 0].

(b) Calculate and store [zL
i+1, z

U
i+1] using Step 3. above.

Remark 3. The staggered corrector method can be used for efficient integration of the dynamic
systems [11].

Remark 4. The system (11), (12), (13) and (14) is independent of the parameters w, hence the
values of M(τ) and n(τ) are also independent of w. Hence, if the epochs are of equal duration,
i.e., τi − σi is constant for all i, step (4ai) only needs to be executed once for i = 2.

Remark 5. Note that M1 is a nx × np matrix, while Mi6=1 is a nx × (np + nx) matrix.

Although Theorem 1 guarantees exact bounds for the system (7) and (8), the bounds
obtained from implementing (A1) have no guarantee of being exact for Z past the first epoch.
This arises because bounds for different elements of [zL

i , zU
i ], i > 2, could come from different

predecessor modes Ii−1, and this is illustrated in the example presented below. One way to
obtain exact bounds is to solve the bounding equations (see [2] for obtaining the exact bounds
for fixed Tµ) for all possible combinations of Tµ. This method clearly suffers from exponential
complexity in the number of epochs, and an alternative algorithm for computing tighter bounds
for Z is needed.

4 The Relaxed LP Algorithm

Consider the following problem.



Problem 1 (P1( α,β)).

min
p∈P,Y∈Y b,Z

eT
β zα+1 (24)

s.t.
nm
∑

m=1

ymi = 1, ∀ i = 1, . . . , α, (25)

zi+1 =
nm
∑

m=1

ymi

(

Dixmi(p,Z, τi) + Eip + ki

)

,∀ i = 1, . . . , α, (26)

z1 = E0p + k0, (27)

where Y b ≡ {0, 1}nm×α ⊂ Y ≡ [0, 1]nm×α, Z ∈ R
nx×(α+1), and the unit vector eβ is the βth column

of the rank nx identity matrix; xmi(p,Z, t) are given by the solution of the following embedded
LTV ODE systems for all m ∈ M , i = 1, . . . , α,

ẋmi(p,Z, t) = A(m)(t)xmi(p,Z, t) + B(m)(t)p + q(m)(t), ∀ t ∈ Ii, (28)

xmi(p,Z, σi) = zi. (29)

Problem (P1) determines the exact lower bound for the βth component of x(p, Tµ, σα+1) =
zα+1. We can construct a convex relaxation for (P1) by treating the bilinear terms in (26) using
the exact linearizations in [12]. We can then formulate the following, equivalent, MILP.

Problem 2 (P2( α,β)).

min
p,Y,Z,V,W,S

eT
β zα+1 (30)

s.t.
nm
∑

m=1

ymi = 1, ∀ i = 1, . . . , α, (31)

zi+1 =
nm
∑

m=1

smi, ∀ i = 1, . . . , α, (32)

z1 = E0p + k0, (33)

vU
mi(ymi − 1) + vmi ≤ smi ≤ vL

mi(ymi − 1) + vmi, ∀ m ∈ M, i = 1, . . . , α, (34)

vL
miymi ≤ smi ≤ vU

miymi, ∀ m ∈ M, i = 1, . . . , α, (35)

vm1 =
(

D1M
(m)
1 (τ1) + E1

)

p + D1n
(m)
1 (τ1) + k1, ∀ m ∈ M, (36)

vmi =
(

DiM
(m)
i (τi) + Li

)

wi + Din
(m)
i (τi) + ki, ∀ m ∈ M, i = 2, . . . , α, (37)

wi = (p, zi), ∀ i = 2, . . . , α, (38)

w1 = 0, (39)

where Y ∈ Y b ≡ {0, 1}nm×α ⊂ Y ≡ [0, 1]nm×α, Z ∈ R
nx×(α+1), V ∈ V ⊂ R

nx×nm×α, W ∈
R

(np+nx)×α, S ∈ R
nx×nm×α, and the unit vector eβ is the βth column of a rank nx identity matrix;

Li = [Ei 0]; M
(m)
1 (τ1) and n

(m)
1 (τ1) are given by the solution of the system (17), (18), (19) and

(20) from σ1 to τ1 for m ∈ M ; and M
(m)
i (τi) and n

(m)
i (τi) are given by the solution of the system

(11), (12), (13) and (14) from σ = σi to τ = τi, for m ∈ M , i = 2, . . . , α.



The required bounds on the auxiliary variables V (see (34) and (35)) constitute the set
V , and can be determined sequentially for each epoch (see algorithm below). The variables Z,
W, S are left as free or unrestricted variables. While it is impractical to solve a family of MILPs
(P2) to obtain the tightest bounds for Z, it is much cheaper to solve (P2) on the relaxed space
Y ∈ Y , resulting in solving a family of relaxed LPs to provide valid (but not exact) bounds for Z.
This constitutes the following algorithm.

Algorithm 2 (A2).

1. Execute steps 1., 2. and 3. in (A1).

2. For i = 2 to (ne − 1) do:

(a) For m = 1 to nm do:

i. Integrate the system (11), (12), (13) and (14) from σ = σi to τ = τi, and store
M

(m)
i (τi) ← M(τ) and n

(m)
i (τi) ← n(τ).

ii. Calculate and store [x̂(m)L(σi+1), x̂(m)U(σi+1)] from

[x̂(m)](σi+1) =
(

DiM
(m)
i (τi) + Li

)

[w] + Din
(m)
i (τi) + ki. (40)

where wL = (pL, zL
i ), wU = (pU , zU

i ), and Li = [Ei 0].

(b) For m = 1 to nm do:

i. For j = 1 to nx do:
A. Solve (P2(i,j)), with [vλθ] = [x(λ)](σθ+1), θ = 1, . . . , i−1, and [vλi] = [x̂(λ)](σi+1),

for all λ ∈ M , on the relaxed space Y , with the following constraint,

ymi = 1, (41)

and store x
(m)
j

L
(σi+1) ← objective.

B. Repeat step A. as a maximization problem, and store x
(m)
j

U
(σi+1) ← objective.

(c) For j = 1 to nx do:

i. Calculate and store the jth element of [zL
i+1, z

U
i+1] from

(zL
i+1)j = min

m∈M
x

(m)
j

L
(σi+1), (zU

i+1)j = max
m∈M

x
(m)
j

U
(σi+1). (42)

5 An Illustrative Example

Consider an isothermal plug flow reactor (PFR) operating at steady state, and 3 possible choices
of catalyst. The reaction scheme, initial conditions and associated rate constants are shown in
Fig. 1, where xi represents the molar concentration of component i (mol m−3) and kj represents
the rate constant of reaction j (h−1). The PFR has a uniform cross-sectional area of 1 m2,



Figure 1: Chemical reaction scheme and kinetics for PFR example

and a constant volumetric flow rate of 1 m3 h−1. In this example, the independent variable t

is the length, l, of the reactor. Determine the bounds on the concentration of the reactant and
products at the beginning of each reactor section. Note that the choice of catalyst corresponds
to the choice of the sequence of modes in a linear hybrid system with 3 modes (each mode
corresponds to the choice of a different catalyst) and ne epochs (each epoch corresponds to a
section of the reactor), with state continuity at the transitions.

Table 1 shows the bounds obtained for z15 when ne = 15 when explicit enumeration (EE)
(which obtains the exact bounds), (A1) and (A2) are used. As can be seen, (A2) produces tighter
bounds than (A1). When physical information from the problem can be used, e.g., conservation
of molar species, we can add the following additional constraints to (P2),

nx
∑

j=1

(smi)j = 1000ymi, ∀ m ∈ M, i = 1, . . . , α. (43)

When this physical insight is employed, it can be seen that the bounds obtained from (A2) with
(43) produces tighter bounds than using (A2) alone. The reason why (A2) itself does not produce
bounds which obey this conservation law is that the linearizations of the bilinear terms in (26)

Table 1: Bounds for z15 where ne = 15
Species (EE) (A1) (A2) (A2) with (43)

zL
15 zU

15 zL
15 zU

15 zL
15 zU

15 zL
15 zU

15

A 0.00 41.28 0.00 41.28 0.00 41.28 0.00 41.28
W1 369.73 927.18 78.52 4365.72 230.54 2030.39 321.03 981.59
I 11.60 567.77 11.60 815.88 11.60 567.77 11.60 567.77
W2 2.43 27.87 1.08 79.06 1.54 44.77 1.54 44.77
P 7.34 293.77 0.69 1005.21 1.51 544.39 1.53 451.06



are only exact on the space Y b, and not on the space Y . Hence, we have to enforce the law with
(43). Note that there is no way to incorporate additional (arbitrary) constraints within (A1). For
further illustration, the upper bound computed for species W1 at the beginning of each section
when ne = 10 is shown in Table 2.

Table 3 shows the bounds obtained for W1 when the algorithms are trivially extended
to calculate the bounds at l = 1. It can be seen that the bounds obtained from (A1) and (A2)
deteriorate significantly from the exact bounds as ne increases. When physical insight (43) is
employed in conjunction with (A2), much tighter bounds are obtained. All calculations were
performed on an AMD 1.2 GHz, 1 GB RAM machine using CPLEX 7.5 as the LP solver, and the
computation times for the algorithms are shown in Table 4, from which the exponential explosion
of (EE) is clear.

Table 2: Upper bound for W1 (ne = 10)
Section (EE) (A1) (A2) (A2)

with (43)
2 927.18 927.18 927.18 927.18
3 927.18 1586.13 927.18 927.18
4 927.18 2054.45 1161.34 932.50
5 927.18 2387.29 1245.91 945.55
6 927.18 2623.83 1356.05 954.30
7 927.18 2791.95 1401.19 961.80
8 927.18 2911.43 1461.41 967.78
9 927.18 2996.34 1482.13 972.70
10 927.18 3056.69 1516.14 976.73

Table 3: Upper bound for W1 at l = 1
ne (EE) (A1) (A2) (A2)

with (43)
5 927.18 1811.88 1094.46 967.02
10 927.18 3099.58 1523.92 980.04
15 927.18 4404.00 2052.69 983.43
20 927.18 5712.63 2605.73 984.89

Table 4: CPU times (s)
ne (EE) (A1) (A2) (A2)

with (43)
5 0.04 0.04 1.6 2.3
10 0.4 0.04 8.3 12.8
15 135 0.04 27.1 45.7
20 44227 0.04 50.7 86.7
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