
403l

Large-Scale Dynamic Optimization with the Directional Sec ond Order Adjoint Method

Derya B. Özyurt and Paul I. Barton

Department of Chemical Engineering
Massachusetts Institute of Technology
66-464, 77 Massachusetts Avenue
Cambridge, MA 02139
derya@mit.edu, pib@mit.edu

Abstract

Efficient solution of large-scale dynamic optimization problems can be achieved by exploiting the
advantages of state-of-the-art integration and large-scale nonlinear programming tools. Truncated-
Newton method provides an effective way to solve large-scale optimization problems by achiev-
ing savings in computation and storage. For dynamic optimization, the Hessian-vector products
required by these methods can be evaluated accurately at a computational cost which is usu-
ally insensitive to the number of optimization variables using a novel directional Second Order
Adjoint (dSOA) method. The case studies presented in this paper demonstrate that a dSOA pow-
ered truncated-Newton method is a promising candidate for the solution of large-scale dynamic
optimization problems.

Key words: directional second order derivatives, truncated-Newton method, staggered corrector
method

Prepared for presentation at the 2004 Annual Meeting, Austin, TX, Nov. 7-12

Copyright c©. D. B. Özyurt and P. I. Barton, Massachusetts Institute of Technology.

1 Introduction

Dynamic optimization problems consist of an objective function(al) dependent on a set of state
variables that are determined in general by differential-algebraic equations (DAEs). The efficient
numerical solution of these problems is important in many applications where optimization of
time-dependent performance is required, such as optimal control, parameter estimation, and dy-
namic system synthesis and analysis. Solution procedures for dynamic optimization problems
often have to tackle with large numbers of state variables, optimization parameters, and con-
straints on the overall dynamic system, and/or those that are generated by the solution approach.
An approach which decouples the optimization problem from the solution of the embedded dy-
namic system can enable exploitation of the full advantages of state-of-the-art integration and
large-scale nonlinear programming tools.

If we consider the solution of optimal control problems as an example, then for a given
instance of the parameter values characterizing the control discretization, the embedded DAE
system is solved to provide the objective function value and its derivative values to be utilized
by a gradient-based NLP solution procedure. Derivative information can be extracted from the
first order sensitivities and there are several efficient methods to calculate these sensitivities[1,
2]. It has also been shown that for DAE embedded functionals the first order adjoint method
can be more attractive when the number of parameters is large and there is one or a small
number of functionals [3]. This is because, except in pathological situations [4], the cost of the
adjoint calculations relative to the cost of a simulation is insensitive to the number of parameters
involved, whereas for sensitivities this relative cost scales linearly with the number of parameters.
For large-scale problems, if second order information is employed by the optimization procedure,
directional second order derivatives are often estimated using directional finite differences based
on a first order adjoint code. Specifically, the Hessian-vector product of the objective function

J(p) = g(x(tf , p), p) +

∫ tf

t0

h(t, x(t, p), p) dt (1)

at p∗in the direction u is estimated by

∇2J(p∗)u ≈
∇J(p∗ + εu) −∇J(p∗)

ε
, (2)

which requires two state and adjoint integrations, one at p∗ and one at p∗ + εu. The cost of com-
puting this estimate relative to the cost of a simulation is insensitive to the number of parameters,
by virtue of the properties of the adjoint integration.

Truncated-Newton methods are a class of optimization methods which employ direc-
tional second order information in updating the current estimate of the solution by approximately
solving the Newton equations

∇2J(p(k))u = −∇J(p(k)) (3)

using an iterative procedure [5, 6]. Each inner iteration of the truncated-Newton method requires
evaluation of the Hessian-vector product, ∇2J(p(k))u, in a given direction u.

Incorporation of “exact” second order information within truncated-Newton methods has
been undertaken previously for data assimilation problems [7, 8]. This rather specific case of
the general directional second order adjoint method presented here, is implemented for non-stiff
ODE embedded systems using a “direct” Automatic Differentiation (AD) [9] approach. Instead of
applying AD to a code that integrates the embedded system, the dSOA method presented in this
paper constructs differentiated subroutines to be integrated by an implicit integration scheme.
This “targeted” AD approach reduces the computational cost and accurate Hessian-vector prod-
ucts are calculated in less time than two gradient evaluations [4]. In addition, except in patholog-
ical situations [4], the cost of the dSOA method relative to the cost of a simulation is insensitive
to the number of parameters involved. Another approach to compute second order information
for truncated-Newton methods is calculating the Hessian-vector products from directional sec-
ond order forward sensitivities [10]. However, the cost of calculating the directional second order
sensitivities, relative to the cost of a simulation, scales linearly with the number of parameters
and for large-scale dynamic optimization problems these sensitivity calculations can become
very expensive.

In this study, we assume that the dynamic optimization problem is given as

min
p

J(p) = g(x(tf , p), p) +

∫ tf

t0

h(t, x(t, p), p) dt (4)

ẋ + F (t, x, p) = 0, x(t0) = x0(p), (5)

subject to the following bounds on the optimization parameters

pL ≤ p ≤ pU . (6)

Although the following presentation only considers stiff ODE systems, by subtle consideration of
initial conditions and stability of the adjoint systems, the theory and application can be extended
to DAE embedded systems.

In the following section, a short description of Nash’s Truncated-Newton method [6] with
dSOA as a directional second order derivative evaluator is given. Examples presented demon-
strate the promise of the proposed approach.

2 “dSOA powered” truncated-Newton method

Truncated-Newton methods consist of an outer iteration for the nonlinear optimization problem
and an inner iteration for approximate solution of the Newton equations. These methods provide
an effective solution procedure for large-scale optimization problems if an efficient but approx-
imate solution of the Newton equations can produce a “good” direction which can be used in
the outer iteration with appropriate globalization strategies [5]. Techniques to calculate the req-
uisite second order information efficiently and accurately can improve the overall method by
expanding its applicability to large-scale dynamic optimization problems. The directional second

order adjoint method along with its first order counterpart computes the directional second order
derivatives and gradients of the objective function efficiently and accurately, improving both the
outer and inner iterations of the truncated Newton methods.

The truncated-Newton algorithm adapted to solve large-scale dynamic optimization prob-
lems can be stated as follows:

1. Set iteration number, k = 0 and specify an initial approximation p(0) to the optimal solution
p∗.

2. If the approximation p(k) is a local minimizer of J within a given tolerance, Stop.

3. Solve Eqn. (3) approximately by a modified-Lanczos algorithm [6] using preconditioning
[11] to obtain a search direction, u. At each iteration of this inner loop the Hessian-vector
products required are calculated by the dSOA method.

4. Apply a line search to find α > 0 such that J(p(k) + αu) < J(p(k)). Gradient evaluations are
performed by a first order adjoint method [3].

5. Set p(k+1) = p(k) + αu, k = k + 1 and go to Step 2.

This algorithm is implemented using Nash’s truncated-Newton code for optimization
problems with bounds on variables [6]. The original code is modified to include the dSOA method
in Step 3.

The evaluation of directional second order derivatives by the dSOA method requires
solution of the state equations

ẋ + F (t, x, p) = 0, x(t0) = x0(p),

and directional first order sensitivities

ṡ + Fxs + Fpu = 0, s(t0) = x0pu,

forward in time. At the final time point of the forward integration (tf), if the objective function
consists of point-form functionals, initial values of the adjoint variables should be calculated.
Then first order adjoint

λ̇T − λT Fx = −hx, λT (tf) = 0,

and directional second order adjoint equations

µ̇ − F T
x µ = (λT ⊗ Inx

)(Fxpu + Fxxs) − hxxs − hxpu, µ(tf) = 0,

must be integrated backward in time. Finally we can calculate the directional second order
derivative of a integral functional G(p) (≡

∫ tf

t0
h(t, x(t, p), p)) by

∂2G

∂p2
u =

∫ tf

t0

{hpp u + hpx (xpu) −
[

F T
p µ + (λT ⊗ Inp

)(Fpp u + Fpx (xpu))
]

}dt

+
[

(λT ⊗ Inp
)xpp u + xT

p µ
]

t=t0
. (7)

The size of the first four systems is independent of np, the number of parameters. On the
other hand, the formulation requires evaluation of several vector-matrix, matrix-vector and vector-
matrix-vector products. Therefore a successful implementation of the dSOA method is achieved
by calculating these terms accurately and efficiently using AD [9]. The details of the dSOA
method can be found in [4].

Estimating the Hessian-vector product using directional finite differences (Eqn. 2) re-
quires two gradient evaluations at the first iteration of the first inner loop (one at p(0) and one at
p(0) + εu) of the truncated-Newton method. However, at the second and subsequent iterations of
each inner loop only a single gradient evaluation is required, at p(k) + εu, because p(k) remains
fixed and only the direction u changes. Our numerical experience shows that evaluation of the
directional second order derivatives using dSOA will be roughly 10-30% more expensive than a
single gradient evaluation using the first order adjoint method [4]. This means that the cost of in-
ner iterations for the “dSOA powered” truncated-Newton method will be only marginally different
from estimation using directional finite differences. The benefit of our proposed method, there-
fore, will be seen empirically in the overall time for optimization because of the higher accuracy
of the second order information resulting in faster and/or more robust convergence. Moreover,
success in approximating the second order derivatives via gradients requires a proper ε value for
the finite difference method. Elimination of this potentially failure prone or sometimes impossible
selection is another advantage of the “dSOA powered” truncated-Newton method.

3 Examples

The following case studies showcase the effectiveness and efficiency of the directional second
order adjoint method in conjunction with a well known truncated-Newton method. Numerical
experiments are performed on a Pentium IV/3.20 GHz Shuttle X machine with 1 GB memory
and running Linux kernel 2.4. All automatic differentiation tasks are performed by the AD tool
TAMC [12].

3.1 Canned food sterilization

The problem of industrial sterilization [10, 13] of canned food is considered as the first example.
This involves modeling heating and thermal degradation processes. Heating of the canned foods
by conduction is modeled by employing Fourier’s second law on cylindrical coordinates. The
PDE is reduced into an ODE using the numerical method of lines. In addition, the thermal
degradation of the microorganisms and nutrients are assumed to obey pseudo first order kinetics.
We consider the final retention of a nutrient within total volume of the container as our functional.

Similar to the procedure described in [10] an approximate solution is obtained for the
above stated problem by assuming both inequality constraints are active at the optimal solution

and incorporating them as quadratic penalty terms within the objective function. The integration
tolerance is 10−7 and the optimization accuracy (oa) value is set to 10−5. In this example with
302 equations, only restarting of the integration at the control parameter grid points contributes
to the increase of the computational cost per iteration. For an initial guess, Tretort = 100.0 (ex-
cept for np = 56, 112, where the last 5 and 12 constant profile value guesses are set to 20.0)
and increasing the number of control parameterization grid points (np), computational results are
listed in Table 1. Computing directional second order derivatives with dSOA is advantageous
considering that its average time per iteration increases less than twice for doubled number of
parameters. Another reason for employing dSOA for the evaluation of second order derivative

Table 1: Computational results for the canned food sterilization example (np: number of parame-
ters, NIT : number of iterations, NF : number of outer iterations, CG: number of inner iterations,
J : objective function value, CPU : overall CPU time, TPI: average CPU time per iterations).

np NIT NF CG J CPU(s) TPI(s)

7 17 20 41 0.4678 172.4 2.8
14 25 28 60 0.4711 387.6 4.4
28 45 54 133 0.4721 1382.4 7.4
56 46 59 112 0.4722 2385.1 14.0

112 97 110 248 0.4717 9073.1 25.3

information is that the finite difference approximation to estimate the same second order informa-
tion often fails to give sufficiently accurate directions for the optimization and results in termina-
tion of the optimization procedure without finding a solution. In all cases the gradient evaluation
at the perturbed optimization parameter values resulted in physically unreasonable state values
(e.g., negative temperatures) and therefore erroneous gradients, consequently failing the outer
iterations. It was not possible to solve this problem using directional finite differences.

On the other hand, the directional second order sensitivity based approach can solve
the canned food sterilization problem at a higher cost (Table 2). Collectively, the average CPU

Table 2: Computational results for the canned food sterilization example using directional second
order forward sensitivities.

np NIT NF CG J CPU(s) TPI(s)

7 17 20 40 0.4679 342.9 6.9
14 22 25 48 0.4702 976.0 16.1
28 37 51 105 0.4712 5698.5 43.7

time per iteration for the “dSOA powered” truncated-Newton method is very comparable with the
same of the FDM based method (Figure 1). Here TPI for FDM is obtained by averaging the time
elapsed per iteration before any failure occurs.

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

45

of Parameters

T
P

I (
s)

dSOA
FDM
dSOF

Figure 1: Comparison of TPI for dSOA, FDM and dSOF

3.2 Temperature profile matching

A two dimensional boundary control heating problem adopted from [14] is considered as the sec-
ond case study. A rectangular domain is heated by controlling the temperature on its boundaries
so that a prespecified temperature-time trajectory is approximately followed within a specified
interior subdomain. The nonlinear parabolic PDE is reduced into an ODE using the numerical
method of lines [14].

For an integration tolerance at 10−10 and the optimization accuracy value of 10−8, several
cases with a gradually increasing number of parameters were tested. The number of parameters
is increased both by finer control parameterization and addition of initial conditions as degrees
of freedom to the optimization. These latter additions are noted by a (+) sign in Column 2 of
Table 3, i.e., 10 + 450 denotes 10 control parameters and 450 initial conditions are considered
as optimization parameters. Nonlinearity is introduced by the addition of a nonlinear heat source
term and noted by (nl) in Column 2.

From the last Column of Table 3 we conclude that the computational cost per iteration of
a “dSOA powered” truncated-Newton method stays constant when more parameters are added
to the optimization problem. The only increase is caused by integration restarts at each control
vector parameterization time point. Obviously, the total cost of optimization increases because
the number of iterations increases.

Finite difference approximation to the directional second order derivatives does not result
in a robust performance (Table 4). Especially, for cases with larger number of parameters or
nonlinearity, the dSOA based method outperforms this approach in terms of attained objective
function value at a comparable overall computational cost.

Table 3: Computational results for the temperature matching example (nx: number of equations,
np: number of parameters, NIT : number of iterations, NF : number of outer iterations, CG:
number of inner iterations, J : objective function value, CPU : overall CPU time, TPI: average
CPU time per iterations).

nx np NIT NF CG J(×105) CPU(s) TPI(s)

45 40 33 34 105 4.295 69.3 0.5
40+5 30 30 100 4.325 65.4 0.5

40+20 34 35 101 4.582 67.4 0.5
160 78 79 206 4.812 464.1 1.6
320 128 129 269 7.779 1108.8 2.8

320(nl) 115 120 229 75.99 983.4 2.8
861 10+5 12 13 36 6.922 1049.6 21.4

10+450 32 33 183 6.258 5079.1 23.5
20 22 23 80 4.736 4019.5 39.0
50 48 49 171 4.193 17660 80.3

4 Conclusions

An efficient method to calculate accurate directional second order derivatives is incorporated into
the truncated-Newton method to solve large-scale dynamic optimization problems. Since dSOA
has only “weak” np-dependence, as the number of parameters is increased, the relative cost of
derivative evaluations for large dynamic systems with many parameters does not amplify, staying
constant if no integration restarts are necessary.

Although the computational costs of evaluating a gradient and a directional second order
derivative with dSOA are comparable for a large number of parameters, obtaining the latter
accurately improves the computation time by reducing the total number of iterations. Therefore,
the directional finite difference method using gradient evaluations can give similar optimization
results with comparable computational cost but with decreased accuracy provided that there are
no numerical difficulties using the procedure.

The existing implementation can be improved in several ways. Since an additional direc-
tion can be obtained even “cheaper” [4], linear biconjugate methods can be used for the inner
iterations to solve the Newton equations (3). The dSOA method to calculate directional second
order derivatives of ODE embedded functionals can be extended to include differential-algebraic
equations. Moreover, for larger systems constructed by PDE semi-discretizations iterative linear
solvers can be utilized to reduce the cost of integration.

Table 4: Computational results for the temperature matching example using finite difference
approximation of the Hessian-vector product (∗ marks the runs where the optimization procedure
terminated because no significant improvement in the objective function value is achieved).

nx np NIT NF CG J(×105) CPU(s) TPI(s)

45 40 33 33 121 4.330 61.1 0.4
40+5 30 31 94 4.358 49.0 0.4

40+20 24 25 54 11.95∗ 31.5 0.4
160 83 84 222 4.600 412.8 1.4
320 112 113 224 10.80∗ 883.4 2.6

320(nl) 110 114 219 155.55∗ 899.7 2.7
861 10+5 13 14 39 6.922 988.1 18.6

10+450 7 8 16 16.86∗ 444.9 18.5
20 24 25 80 4.735 3506.1 33.4
50 27 28 83 4.606∗ 8116.8 73.1

References

[1] W. F. Feehery, J. E. Tolsma, and P. I. Barton. Efficient sensitivity analysis of large-scale
differential-algebraic systems. Applied Numerical Mathematics, 25:41–54, 1997.

[2] Timothy Maly and Linda Petzold. Numerical methods and software for sensitivity analysis
of differential algebraic equations. Applied Numerical Mathematics, 20:57–79, 1996.

[3] Y. Cao, S. Li, L. Petzold, and R. Serban. Adjoint sensitivity analysis for differential-algebraic
equations: The adjoint DAE system and its numerical solution. SIAM Journal on Scientific
Computing, 24(3):1076–1089, 2003.

[4] Derya B. Özyurt and Paul I. Barton. Cheap second order directional derivatives of stiff ODE
embedded functionals. In press: SIAM Journal on Scientific Computing, 2004.

[5] Stephen G. Nash. A survey of Truncated-Newton methods. Journal of Computational and
Applied Mathematics, 124:45–59, 2000.

[6] Stephen G. Nash. Newton-type minimization via the Lanczos method. SIAM Journal on
Numerical Analysis, 21(4):770–788, 1984.

[7] Francois-Xavier Le Dimet, I. M. Navon, and D. N. Daescu. Second-order information for
data assimilation. Monthly Weather Review, 130:629–648, 2002.

[8] Z. Wang, I. M. Navon, X. Zou, and F. X. Le Dimet. A truncated Newton optimization al-
gorithm in meteorology applications with analytic Hessian/vector products. Computational
Optimization and Applications, 4:241–262, 1995.

[9] Andreas Griewank. Evaluating derivatives: Principles and techniques of algorithmic differ-
entiation. SIAM, Philadelphia, 2000.

[10] E. B. Canto, J. R. Banga, A. A. Alonso, and V. S. Vassiliadis. Restricted second order in-
formation for the solution of optimal control problems using control vector parameterization.
Journal of Process Control, 12:243–255, 2002.

[11] Stephen G. Nash. Preconditioning of Truncated-Newton methods. SIAM Journal on Scien-
tific and Statistical Computing, 6(3):559–616, 1985.

[12] Ralf Giering. Tangent linear and Adjoint Model Compiler: Users Manual 1.4.
http://www.autodiff.com/tamc, 1999.

[13] J. R. Banga, R. I. Perez-Martin, J. M. Gallardo, and J. J. Casares. Optimization of the ther-
mal processing of conduction-heated canned foods: Study of several objective functions.
Journal of Food Engineering, 14:25–51, 1991.

[14] Linda Petzold, J. B. Rosen, P. E. Gill, L. O. Jay, and Park K. Numerical optimal control
of parabolic PDEs using DASOPT. In L. T. Biegler, T. F. Coleman, A. R. Conn, and F. N.
Santosa, editors, Large Scale Optimization with Applications: Part II. Springer-Verlag, New
York, 1997.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

