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ABSTRACT 
 
This paper presents an integrated analysis of production and financing decisions.  We  
construct a model in which a cash storage unit is installed to manage the cash flows 
associated with production activities such as raw material procurement, process operating 
setup, inventory holding costs and finished product sales.  Temporary financial 
investments are allowed to increase profit.  The production plant is modeled by the Batch-
Storage Network model with Recycle Streams developed by Yi and Reklaitis (2003).  The 
objective function of the optimization is minimizing the opportunity costs of annualized 
capital investment and cash/material inventory minus the benefit to stockholders.  The 
major constraints of the optimization are that the material and cash storage units must not 
be depleted.  A production and inventory analysis formulation, the periodic square wave 
(PSW) model, provides useful expressions for the upper/lower bounds and average levels 
of the cash and material inventory holdups.  The expressions for the Kuhn-Tucker 
conditions of the optimization problem are reduced to a subproblem and analytical lot sizing 
equations. This subproblem is then decomposed into two separable concave minimization 
network flow problems whose solutions yield the average material and cash flow rates 
through the networks.  The production and financial transaction lot sizes and startup times 
can be determined by analytical expressions after the average flow rates are already known.  
We show that, when financial factors are taken into consideration, the optimal production lot 
and storage sizes are smaller than is the case when such factors are not considered.  An 
illustrative example is presented to demonstrate the potential of this approach. 
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Introduction 
 
Most production planning and scheduling models developed to date in process system 
engineering endeavor to identify a plan or schedule that minimize the overall cost while 
satisfying production capacity and demand constraints.  A key assumption of these models 
is that an unlimited amount of cash is available.  In practice, however, cash is usually the 
scarcest resource and cash availability is an important factor influencing the feasibility of a 
production plan or schedule.  It is commonplace for a planned production to be 
unrealizable for a period of time due to a lack of cash to cover the production costs, 
resulting in other resources being under-utilized during that period.  Then, when the cash 
does become available, overproduction must be conducted to fill backorders.  These 
inefficiencies can cause substantial loss of profit.  In fact, every aspect of production 
involves financial transactions and cash flows.  Manufacturers purchase raw materials for 
production purposes, creating accounts payable owed to suppliers.  The actual 
disbursement of cash occurs when the payment medium used to pay for the purchase, 
such as a check, is redeemed through the bank system.  Raw materials are converted into 
finished products by consuming operational utilities that incur costs associated with their 
purchase or production.  The finished product inventory is converted into accounts 
receivable as customers make purchases on credit.  Receivables are then collected from 
customers remitting payment to the company.  Cash is received when the payment 
medium, such as a check, is redeemed through the bank system.  In the mean time, the 
company must pay taxes, salaries, and disburse loans.  To prevent temporary cash 
shortages in some circumstances, new loans must be arranged.  If there is excess cash, 
temporary investment in marketable securities should be considered to increase income.  
If operating cash flows are not well managed, seemingly profitable firms may experience 
financial strains that could potentially lead to bankruptcy.  For example, if too many 
resources are tied up in inventory or accounts receivable, then even a profitable company 
may not be able to pay its bills.  Therefore, it is essential to consider cash flow when 
making production planning and scheduling decisions.  A successful firm manages its 
operations so as to optimize both profit and cash flow. 
Yi and Reklaitis (2000) developed a novel production and inventory analysis method called 
the periodic square wave (PSW) method and used it to determine the optimal design of a 
parallel batch-storage system.  They subsequently extended the PSW formalism to model 
the more complicated plant structure of a sequential multistage batch-storage network (Yi 
and Reklaitis, 2002).  In another study (Yi and Reklaitis, 2003), the same authors 
suggested a non-sequential network structure that can deal with recycled material flows in a 
plant site.  In the present study, we extend the batch-storage network model suggested by 
Yi and Reklaitis (2003) to include both the cash storage and the financial transactions 
required to support the production activities.  In the proposed model, all production 
activities are accompanied by financial transactions in which the appropriate amount of 
cash is withdrawn from the cash storage to pay for the costs.  Cash is inputted to the 
storage after delivery of the finished product to consumers.  The cash inventory should be 
managed so as to ensure that it is not depleted.  The objective function of the optimization 
is minimizing the opportunity costs of annualized capital investment and cash/material 
inventory minus the benefit to stockholders. 
 
 
Definition of Parameters and Variables  
 
We use the plant structure introduced by Yi and Reklaitis (2003). Suppose that there exists 
a cash storage unit that, through financial transactions, operates the chemical plant 



  

composed of batch process setIand material storage unit set J, as depicted in Figure 1.  
Let set N with subscript n represent the set of temporary financial investments in 
marketable securities and set O with subscript o represent the set of stockholders.  
Corporation income tax is usually proportional to net profit and is thus considered as a 
payment to a fictitious stockholder without loss of generality.  Sales tax, which is usually 
proportional to sales revenue, is collected from customers when finished products are 
delivered to them and is paid to the IRS (Internal Revenue Service) yearly.  In chemical 
companies, total labor cost is usually proportional to total sales revenue.  We ignore the 
cash flow of labor costs in the present study because it is treated in the same way as sales 
tax.  Note that the setup cost usually includes the operating labor cost.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Cash Storage and Financial Transactions 
 
 
The incoming cash flows into the cash storage unit are: 
 
CF1) Collection of account receivable after collection drifting time j

mt∆  from shipping of 
the finished product to consumer m. (Sales tax is included.) 

CF2) Return of temporary financial investment n at interest rate nκ  ($/$/year) after 
investment period nt∆ . 

 
The outgoing cash flows from the cash storage unit are: 
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CF3) Disbursement of account payable after disbursement drifting time j
kt∆  for raw 

material purchase from supplier k. 
CF4) Temporary financial investment at interest rate nκ  ($/$/year) for investment period 

nt∆ . 
CF5) Financial transaction of purchase setup cost. 
CF6) Financial transaction of investment setup cost. 
CF7) Financial transaction of processing setup cost. 
CF8) Inventory operating cost. 
CF9) Dividend to stockholders (can include corporation income tax). 
CF10) Sales tax payment to IRS with tax rate ς  ($/$). (Labor cost can be treated as the 

same way.) 
 
In the present work we do not consider the case of the corporation taking bank loans to top 
up their cash reserves because, once any initial cash shortage has been addressed, it 
should be unnecessary to take further loans, and such loans consume the benefits to 
stockholders’.  We assume that the temporary financial investment has a setup cost of nA  
$/transaction.  This transaction cost is withdrawn from the cash storage when the financial 
investment is made, as is defined in CF6. In addition, we assume that the setup cost 
transactions of CF5, CF6 and CF7 and the inventory operating cost of CF8 are paid 
proportionally with material processing.  In other words, the cash flows of the setup cost 
transactions and their material flows have the same cycle time, startup time and storage 
operation time fraction but different batch sizes.  The cash flow of the inventory operating 
cost is proportional to the inventory level.  Each cash flow is represented by the PSW 
model as follows: 
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where D is the average flow rate, B is the batch size, ω  is the cycle time, t′  is the startup 
time, x is the storage operation time fraction and t is time (Yi and Reklaitis 2002).  Note 

that 
ω
BD = .  We refer to Eq. (1) as the first type of PSW flow and Eq. (2) as the second 

type of PSW flow.  Note that average flow rate is used in the first type whereas batch size 
is used in the second type.  The two types of PSW flow have different upper/lower bounds 
and partial derivatives.  The average flow rate of sales tax is proportional to that of total 

sales revenue, that is, ∑ ∑
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Nonlinear Optimization Model 
 
We define C(0) as the initial cash inventory and C(t) as the cash inventory at time t.  Then, 
the cash inventory at time t is calculated by adding the incoming flows CF1 and CF2 to the 
initial cash inventory and subtracting the outgoing flows CF3~CF10. 
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where { } { }0| >≡+ j

k
j
k DkD , { } { }0| >≡+

nn EnE  and { } { }0| >≡+
ii DiD , that is, the index sets 

with positive average flow rates.  The average level of the cash inventory (C ) and the 
lower bound of the cash inventory (C ) are easily calculated by using the properties of PSW 
flow model (Yi and Reklaitis, 2003). 
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We assume that the cash in-flows and out-flows are balanced in the long run.  The 
average flow rates of cash flows into and out of the cash storage unit satisfy the following 
balance equation: 
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Suppose η ($/$/year) is the rate of opportunity cost of the cash inventory.  The objective 
function of the optimization is to minimize the annualized opportunity costs of capital 
investment for process/storage units and cash/material inventories minus the dividend to 
stockholders:  
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where na  ($/$/year) is the annualized financial investment cost, which is proportional to 
size of the temporary financial investment.  Variable na  is introduced for the mathematical 
analogy to j

ka  and ia .  Without loss of generality, the storage size will be determined by 

the upper bound of the inventory holdup jV  (Yi and Reklaitis, 2003).  The independent 
variables are selected to be the cycle times ( ni

j
k ωωω  and  , ), start-up times ( n

in
i

j
k ttt  and  , ) and 

average material/cash flow rates ( ni
j
k EDD  and  , ). 

The objective function Eq. (7) is convex and the constraints are linear with respect to 
ni

j
k ωωω , , , n

in
i

j
k ttt  and  ,  if ni

j
k EDD  and  ,  are considered as parameters.  However, the 



  

convexity with respect to ni
j
k EDD  and  ,  is not clear.  First, we obtain the solution for Kuhn-

Tucker conditions with respect to ni
j
k ωωω , , , n

in
i

j
k ttt  and  ,  when ni

j
k EDD  and  ,  are 

considered as parameters, and then, we further solve the problem with respect to 
ni

j
k EDD  and  ,  (Yi and Reklaitis, 2003).  

 
 
Solution of Kuhn-Tucker Conditions 
 
The solution of the Kuhn-Tucker conditions of the first level optimization problem, which 
entails minimizing the objective function Eq. (7) subject to the constraints 0≥jV  and 

0≥C  with fixed values of ni
j
k EDD  and  , , is obtained by the algebraic manipulation 

summarized in Yi and Reklaitis (2003).  Optimal cycle times are:  
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Note that, due to the financial cost factors, the optimal lot sizes of Eqs. (8) and (9) are 
smaller than those derived previously using approaches such as the classical EOQ model.  
Because the values of the multipliers are positive, we obtain the following expressions from 

0=jV  and 0=C : 
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We find that the optimal material storage size is jj VV
**

2= .  Then, the optimal objective 
value is as follows: 
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The second level optimization problem entails minimizing the objective function of Eq. (17) 
under the constraints of Eqs. (14), (15) and material balance around storage with respect to 
the design variables i

j
k DD  , , nn tE  and .  The second level optimization problem is a 

nonconvex nonlinear programming with bilinear terms, j
k

j
k tD  and in

iitD , as well as 
separable concave terms (square roots).  Because some of the average flow rates will be 
zero at the optimum, it is not easy to compute the derivatives of their square roots at the 
optimum.  Moreover, iA , j

kA  and nA  should be zero if their corresponding average flow 
rates go to zero at the optimum.  To address this issue, the objective function Eq. (17) 
should include binary variables to exclude the setup costs whose average flow rates 



  

become zero.  We can introduce a suboptimal approach to reduce the computational 
complexity.  The second level optimization problem can be replaced with another model 
(e.g., ordinary linear programming) to compute the average rates of material and cash flows 
without damaging the optimality of the lot sizing equations derived from the first level 
optimization problem. 

 
 

Discussion with an Example Plant Design 
 
We used the same plant design example in Yi and Reklaitis(2003) in which cash availability 
had been implicitly assumed unlimited.  A schematic diagram of the plant structure is 
depicted in Yi and Reklaitis (2003).  In this study, we included cash flows and financial 
transactions in the model by means of installing a cash storage unit.  Figure 2 shows the 
optimal cash inventory profile as calculated using Eq. (3). 
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Figure 2.  Cash Inventory Profile 
 
 

Conclusion 
 
In this paper we have extended the common production optimization model to include 
simultaneous decision-making on production and financing.  The optimal production plan in 
the presence of binding financial constraints differed from the plan generated under the 
assumption of unlimited cash availability.  Inclusion of financial factors in the model led to a 
decrease in the optimal production lot and storage sizes.  The objective function of the 
optimization was minimizing the opportunity costs of annualized capital investment and 
cash/material inventory minus stockholder benefits.  Backlogging costs of the cash and 
material inventories and sequence dependent production setup costs were not considered 
in this study.  The average flow rates of material and cash flows were calculated by solving 
separable concave minimization problems by using a piecewise linearization technique 
(Tsiakis et. al., 2001).  Lot sizes and startup times were determined by analytical equations.  



  

In spite of the enlarged scope of the problem, the computational burden was light due to the 
use of mostly analytical results and the numerically easy subproblem structure such as 
separable concave minimization.  
The batch-storage network used in this study is very general to cover most business 
activities such as raw material procurement, transportation, labor, tax as well as production 
and financial transaction.  This study will contribute to preventing even a profitable 
company from being bankrupt because of bad management of operating cash flows and 
lead to genuine enterprise optimization. 
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