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ABSTRACT 

Decision-making for sustainability essentially constitutes a MultiCriteria Decision Making 
(MCDM) problem.  The real challenge relies upon properly characterizing the decision-making 
context at hand, and matching it to one of a wide range of available decision aiding methods.  
This paper briefly reviews some general MCDM topics, including optimality condition and 
various techniques.  The different features in characterizing sustainability oriented decision-
making contexts are also highlighted.  A case study of a reformulated William-Otto process 
with two conflicting objectives is conducted.  Through this chemical process design example, 
the authors intend to illustrate one of many possible ways to incorporate decision aiding and 
searching in a Multi-Objective Programming (MOP) problem.   
 

1. INTRODUCTION 

In the past two decades, sustainability has more than ever been elaborated in a wide 
variety of contexts, including chemical process design.  However, the consensus on a core 
question that has to be primarily answered is still hard to establish: what is a sustainable 
chemical process?  The answer to such a question has been problematic due to the weak 
grasp on three important subjects associated with sustainability: 1) broad appeal and 
conceptual ambiguity 2) measurements of transdisciplinary concerns; 3) incommensurability of 
simultaneous goals.  

Agenda 21 [1], a blueprint for sustainable development agreed by the world leaders at 
the first “Earth Summit” in 1992, pointed out the potential solutions to this puzzle.  It called for 
“development of indicators of sustainable development” as well as “to improve the processes 
of decision-making so as to achieve the progressive integration of economic, social and 
environmental issues.”  As a consequence, various metrics and/or indicators have been 
developed and applied to quantify sustainability in recent years [2, 3].  However, many of 
today’s sustainability assessments stop at merely giving a set of numerical values, without 
further interpreting them or trying to make improvement.   

Decision-making for sustainability, in nature, is a MultiCriteria Decision Making (MCDM) 
problem, in which a trade-off has to be made among multiple incommensurable goals in a 
preferred manner.  The challenges underlying the MCDM for sustainability are twofold.  On the 
one hand, enormous amount of multicriteria decision aiding or decision support methods exist.  
Most of them came from Operations Research and Management Science over the recent 20 



 

years [4].  However, the applicability and effectiveness of each method are strongly case-
specific.  On the other hand, decision-making for sustainability in particular is still young and 
has not been sufficiently studied.  Making a good sustainability-oriented decision essentially 
relies upon properly characterizing the decision-making context at hand, and matching it to one 
of a wide range of available decision aiding methods.   

As far as a process design problem is concerned, the situation may get more 
complicated.  Because designers, in many cases, not only assess and decide whether an 
alternative design is sustainable or not, but also they usually manage to acquire improved 
designs.  To meet this demand, decisions need to be made consistently or favorably with 
respect to the course of searching for new solutions.  The problems of this kind are known as 
multi-objective programming (MOP) or vector optimization.  It should be noted that though 
decision aiding and searching are often applied simultaneously in a MOP problem, they are 
essentially independent and equally important for the ‘optimal’ solution to be finally reached.  
Various techniques have been developed for MOP problems [5, 6].  This paper presents an 
explorative study on how a more sustainable process design can be determined under 
conflicting criteria, as well as illustrates the possible variety in the pathways that may lead to a 
final decison.  
 

2. MULTICRITERIA DECISION AIDING 

Decision aiding has evolved into an active field of research, which set forth not only 
objective truths, but also subjective judgments. More importantly, decision aiding aims to 
bridge the two and establish a scientific basis to formulate a decision-making problem as well 
as provide a solving procedure to the formulated problem, in such a manner that does provide 
guidance to a human decision maker.  Decision-making with more than one criterion has 
unique features and is more difficult to handle.  Numerous literature has been published on 
these issues [4, 5, 7-10].  This section gives a brief discussion on general MCDM topics, such 
as the concept of Pareto optimality, different kinds of techniques and their unique 
characteristics.   

2.1 Pareto Optimality 

Vilfredo Pareto, an Italian economist, first formally proposed a solution in early 1900s to 
the contradiction in judging optimality with respect to multiple incommensurable criteria.  The 
optimality condition that he developed was later named Pareto optimality, which is defined as: 
A decision vector x*є D (or an objective vector f*є O) is Pareto optimal if there does not exist another 
decision vector x є D (or an objective vector f є O) such that fi(x) ≤ fi(x*) (or fi ≤ fi*) for all i=1,….,n 
and fj(x)< fj(x*) (or fj < fj*) for at least one index j. 

Pareto optimality has different names, such as noninferiority, nondominance, efficiency, 
and Paretian efficiency.  This concept stands at the heart of many MCDM techniques.  It is 
easier to understand with visualizations as shown in Figure 1.  

Pareto optimality reflects a relative relationship among a specific group of solutions.  
This relationship may vary when different individuals are considered.  In most cases, there are 
lots of or an infinite number of Pareto optimal solutions, whose relative goodness can not be 
distinguished if criteria are treated equal.  However, in a practical sense, a pool of Pareto 
optimal solutions usually need to be further decided to reach one single “best” solution.  



 

Figure 1.    Visualizations of Pareto optimality 

2.2 Method Classification 

MCDM methods can be classified in a variety of ways.  Readers can refer to [5, 11] for a 
complete discussion.  Nevertheless, any classification emphasizes the difference in handling 
either criteria preference or alternative solutions. 

A widely recognized classification presented in [12] differentiates MCDM methods in 
terms of the timing of preference articulation.  “A priori” and “a posteriori” methods require the 
preference to be elicited before and after the solution process, respectively, while progressive 
articulation is used in “interactive” methods.  Other criteria-based partition may be focused on 
examining what (rank, order, or score) and how (normative or descriptive) preference is 
articulated.  

Methods of MCDM are sometimes split into two types, depending on the property of the 
solution space.  One is Multiple Attribute Decision Making (MADM), which deals with picking 
the most desired solution from an explicit list of finite alternatives.  The other class usually has 
a continuous domain of infinite number of solutions that are often defined implicitly by a 
mathematical programming problem.  This class is named as Multiple Objective Decision 
Making (MODM) for distinction.  Moreover, individuals in the solution space could be evaluated 
in different ways, such as pairwise comparison, threshold elimination, etc. 

2.3 MCDM Techniques 

Method selection has become increasingly challenging, as more MCDM techniques are 
available.  The author of [13] called it as “meta MCDM.”  In order to exhibit the main streams of 
MCDM practice, three selected schools of methods are introduced here without intention to be 
comprehensive. 

Analytic Hierarchy Process (AHP)- AHP, whose origin can be traced back to 1970s, is 
a MCDM tool that may have the most widespread use worldwide [14].  The success of AHP 
can be explained by its three primary functions: 1) hierarchical structuring of complexity; 2) 
ratio scale measurement derived from pairwise comparison; and 3) synthesis of priorities [14-
16].  The simplicity and robustness of AHP have led to a wide range of applications, varying 
from planning, selection, resource allocation, conflict resolution, design and technologies, etc 
[17,18].  AHP is especially suited for MADM problems with large number of criteria and 
alternatives. 

Reference Point- The name of “reference point” is adopted here to refer to a school of 
MCDM methods, in which solutions are evaluated in terms of its “closeness” to an identified 
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reference point.  The classical goal programming [19], compromise programming [20] and the 
so-called “reference point” approach developed by International Institute for Applied Systems 
Analysis (IIASA) [21] fall into this class.  The methods, though differing in mechanisms of 
defining the “goal” and the “closeness”, have been applied in numerous MOP projects.  

Multiattribute Utility Theory (MAUT)- MAUT is one most traditional approach for 
MCDM, which borrowed utility concept from economics [22].  This method assumes the 
existence of utility functions for each concerned attribute.  The mutual independence of the 
preferences between two utility functions is checked using conditions derived from lotteries.  
The final decision is made based on the composite utility of solutions with an identified utility 
decomposition technique.  The application of MAUT is often limited to decision problem with a 
reduced number of attributes and discrete feasible solutions. 
 

3. MCDM FOR SUSTAINABILITY 

The context of a decision-making involves every aspect of information that specifically 
describes the situation in which the decision is made.  Enormous factors need to be taken into 
consideration to fully characterize a decision-making context, such as decision agents, criteria, 
alternatives, and how they relate to each other.  Although decision-making contexts are heavily 
case-dependent, there are some recently discovered common features that have made 
sustainability-oriented decision making a bit more difficult compared with general MCDM 
contexts. 

First of all, criteria may be ill-defined. Many sustainability-related questions remain open 
and their underlying issues are not sufficiently understood.  Therefore, there are cases where 
recognition of certain criteria is incomplete so that the target sustainability concerns are not 
represented properly. 

Second, societal valuation of sustainability criteria is somewhat young, which leads to a 
very dynamic judgment of the relative significance among multiple sustainability criteria.  In this 
sense, uncertainty and arbitrariness associated with sustainability preference articulation are 
high.   

Third, the primary hindrance for evaluating alternatives is the scarcity of adequate 
information and available data. As a consequence, alternative evaluation often ends up with “a 
mixture of quantitative and qualitative, precise and imprecise, subjective and objective data” 
[23].   

Fourth, sustainability calls for equity not only within but also between generations.  To 
this end, various stakeholders with controversial interests are often present as multiple 
decision makers.  How all these different interests can be taken care of in the course of 
decision making, and how the stakeholders with similar or diametrically opposed interests can 
be treated differently constitute another challenge. 

 

4. CHEMICAL PROCESS DESIGN EXAMPLE 

The Williams-Otto (WO) plant first developed in [24] has been widely studied in 
chemical engineering literature.  Different researchers have applied various single objective 
optimization techniques under slightly different problem formulations.  More information can be 



 

found in [25-35].  In this study, a new bi-objective WO problem was formulated, which pursues 
an improved operating condition with respect to two conflicting criteria.  The preference was 
not elicited until the searching process is accomplished in such a manner that the obtained 
solutions are non-dominated to each other.  The final solution was then decided from a finite 
number of non-dominated alternatives using Analytic Hierarchy Process (AHP). 

4.1 Problem Formulation 

Appendix A has a detailed description of the WO process.  The re-formulated model 
based on [25] is shown below.  This new model has two objectives: maximizing return on 
investment (ROI) and minimize waste, 11 bounded variables and 8 equality constraints.  The 
“optimal” solution in [25] is adopted as design condition.  The 11 variables, including 10 
flowrates and reactor temperature, are allowed to vary within the -5%~+5% range around the 
design condition.  The reactor volume is fixed at 60 ft3.   

The objective values at the design condition are 89.58% and 3609 lb/hr, respectively.  
Though there is no inequality constraint in this model, the total constraint violation Ω is 
calculated with the formula: 
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, where hi is equality constraint and gj is inequality constraint in the equal-or-less-than form. 

The design condition has the Ω value of 250.82, which indicates that this condition is not 
strictly feasible.  However, loosening equality constraints to a certain degree is necessary to 
make many constrained problems solvable.  Therefore, Ω=250.82 is applied in this study as a 
threshold for constraint satisfaction.  In other words, only the solutions with a total constraint 
violation equal-or-less-than 250.82 are thought feasible.  
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  Design 
condition 

Lower 
bound 

Upper 
bound 

FA (lb/hr) 13546 
12869 14223 

FB (lb/hr) 31523 
29947 33099 

FD (lb/hr) 36697 
34862 38532 

FG (lb/hr) 3609 
3429 3789 

FRA (lb/hr) 18187 
17278 19096 

FRB (lb/hr) 60915 
57869 63961 

FRC (lb/hr) 3331 
3164 3498 

FRE (lb/hr) 60542 
57515 63569 

FR (lb/hr) 157391 
149522 165261 

FRP (lb/hr) 10817 
10276 11358 

T (oR) 656 
623 689 

f1 (%) 89.58   

f2 (lb/hr) 3609   

Ω  250.82   



 

4.2 Multi-Objective Evolutionary Algorithm (MOEA) 

The unique population-based and heuristics-based characteristics of Evolutionary 
Algorithms (EA) made it particularly suited for solving multi-objective problems.  References 
[36-38] provide good overviews of EAs and MOEAs.  In this study, a revised real-coded 
Strength Pareto Evolutionary Algorithm 2 (SPEA2) along with a novel constraint handling 
technique is applied. 

Constraint Handling- Optimization with a large number of nonlinear equality 
constraints is the toughest kind.  The constraint handling became particularly difficult in this 
problem, mainly due to: 1) high dimensionality; 2) large searching spacing; 3) many nonlinear 
equality constraints; 4) rare and unpredictably distributed feasible solutions. 

[39-41] give good discussions on various constraint handling techniques for EAs.  The 
constraints in this study were handled following an “infeasible path” strategy through 
introducing the total magnitude of constraint violation Ω as an additional objective.  As a result, 
solutions are evaluated with respect to three independent criteria: f1, f2, and Ω to determine 
their Pareto dominance.  

This extra objective is used to direct the searching towards feasible regions.  As the 
feasibility criterion has been set as satisfying a threshold: Ω<=250.82, the third objective Ω 
needs to be treated differently as the other two that tend to pursue extreme values.  Hence, in 
terms of Ω only, the following heuristics were applied:  

o If at least one of the individuals A and B are infeasible (either ΩA or ΩB >250.82), the one with 
a lower Ω is better.  

o If the individual A and B are both feasible (both ΩA and ΩB <=250.82), they tie regardless of 
their Ω values. 

Real-Coded Representation- Binary coded representation has dominated the EA 
research and applications, because EAs were initially inspired by natural evolution and devised 
to mimic operations on chromosomes and genes.  However, real-coded representation has 
inherent advantages for tackling optimization with variables in continuous domains.  More 
importantly, it has been proved that EAs’ effectiveness does not stem from using bit strings 
[42]. 

Vectors of floating point numbers are applied to represent solutions in the searching 
space.  For example, a solution in the decision space of the WO model mentioned above is 
represented by an 11-dimensional real vector that contains the value of eleven corresponding 
decision variables.  Real coding requires disparate genetic operators from those applied in 
binary-coded EAs, especially crossover and mutation.  The BLX-α crossover and random 
mutation are applied in this study.  More details regarding these two operators can be found in 
[42, 43, 44]. 

Revised SPEA2- [45] has more information on SPEA2.  The algorithmic details on the 
adapted SPEA2 method applied in this study are summarized in Appendix B.  The revisions 
were performed to make the algorithm more effective for this particular problem.   

Significant differences are noted in the revised algorithm.  First of all, though density is 
still managed to range between 0~0.5, it is calculated from ranking the average distance to all 



 

non-dominated individuals in the current population.  Second, the size of archive (set of elites) 
is not fixed. It varies with the number of non-dominated solutions within pre-specified bounds.  
Third, tournament selection is performed on entire population, instead of only on archive.  
Consequently, every individual has a chance to reproduce, but the probability is associated 
with its fitness.  

Searching Results- Figure 2(a)~(e) illustrate the snapshots of the 100 solutions 
distributed in the space of the two objectives at different generations.  Figure 2(f) shows a 
closer view of the 19 feasible and nondominated solutions that are found after 30,000 
generations.  The decision variable values are listed in Table 1.  These 19 final solutions are 
feasible Pareto optimal solutions, which need to be further determined for a single ‘best’ 
solution.      

Figure 2.    Solution distribution at different generations 

4.3 Decision Making with AHP 

The final decision now needs to be made from a finite list of alternatives.  The famous 
AHP software Expert Choice v.11 was applied to assist this MADM.  Observation reveals that 
some of the 19 alternatives in Table 1 are fairly close.  Also, the trial version software 
downloaded from www.expertchoice.com has restrictions on the scale of the problems to be 
solved.  Therefore, the final solution is determined from a subset containing five selected 
alternatives as summarized in Table 2.  
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Table 1.   The 19 feasible nondominated solutions after 30,000 generations 

Table 2.   Five alternatives to be decided with respect to two criteria 
 A# 1 A# 2 A# 3 A# 4 A# 5  
C#1: Return on Investment  95.14 95.63 98.00 103.98 104.77 % 
C#2: Waste discharged 3429.49 3433.98 3436.90 3482.21 3510.92 lb/hr 

The hierarchic composition is constructed as shown in Figure 3.  The parameters 
applied in pairwise comparison of five alternatives and two criteria are shown in Table 3(a)~(c), 
respectively.  The return on investment is preferred by a moderate degree over waste 
discharged.  The alternative priority of 1~9 scale is calculated via uniformly dividing the range 
between the minimum and maximum values of two objectives. 

Figure 3.   Hierarchic composition of MADM for a sustainable WO process 
 

Table 3.  Pairwise comparisons 

 1  2 3 4 5 6 7 8 9 10 11  19  
FA 13467 13463 13464 13455 13393 13393 13386 13231 13225 13224 13201  13223 lb/hr 
FB 31078 31063 31056 31048 30907 30892 30877 30474 30470 30448 30435  30431 lb/hr 
FD 36197 36191 36178 36164 36018 36009 35988 35502 35483 35483 35483  35483 lb/hr 
FG 3429 3430 3432 3434 3435 3437 3439 3482 3484 3486 3511  3497 lb/hr 
FR 18328 18329 18329 18328 18328 18328 18328 18325 18325 18325 18325  18325 lb/hr 
FR 60394 60369 60369 60360 60351 60353 60355 60262 60262 60262 60262  60262 lb/hr 
FR 3361 3361 3362 3362 3367 3367 3370 3368 3369 3369 3369  3369 lb/hr 
FR 61053 61063 61065 61065 61051 61072 61064 61122 61121 61121 61121  61121 lb/hr 
FR 157424 157419 157424 154722 157419 157419 157421 157459 157459 157459 157459  157459 lb/hr 
FR 10861 10863 10865 10866 10866 10866 10866 10874 10875 10874 10873  10874 lb/hr 
T 656 656 656 656 656 655 655 655 655 655 655  655 oR 

f1 95.14 95.43 95.49 95.63 97.81 98.00 98.21 103.98 104.37 104.37 104.77  104.61 % 
f2 3429.49 3430 3432.44 3433.98 3434.82 3436.90 3439.17 3482.21 3486.44 3486.44 3510.92  3497.28 lb/hr 
Ω 246.47 242.69 244.45 250.81 249.46 245.79 244.86 249.72 250.20 250.34 245.19  248.98  

 
Pairwis e comp aris on  o f alt ernativ es  
with resp ect to  retu rn  o n inv es tment 

    A# 1 A# 2 A#3 A#4 A# 5 
A#1 1 2 4 8 9 
A#2 1/2 1 2 8 8 
A#3 1/4 1/ 2 1 6 6 
A#4 1/8 1/ 8 1/6 1 2 
A#5 1/9 1/ 8 1/6 1/2 1 

Pairwise comparison of alternatives 
with respect to waste discharged 

   A#1 A#2 A#3 A#4 A#5 
A#1 1 2 2 6 9 
A#2 1/2 1 2 6 8 
A#3 1/2 1/2 1 6 8 
A#4 1/6 1/6 1/6 1 4 
A#5 1/9 1/8 1/8 1/4 1 

 C# 1 C# 2
C# 1 1 2 
C# 2 1/2 1 

(a) (b) 

(c) 

   

Criteria :   

Focus :   

Alternatives :   

C#1: Maximize return 
on investment  

A#1   A#2  A#3  A#4  A#5  

C#2: Minimize waste
discharged  

Decide a most sustainable process design  



 

                                       Table 4.   Calculation results using Expert Choice 

 

 

 

 

The results from Expert Choice are shown in Table 4, which clearly shows that the 
alternative #5 is the “best” solution under the given preference configuration.  
 

5. CONCLUSIONS 

Growing demand for handy and robust MCDM techniques has emerged in sustainability 
related areas to help decision makers to structure and solve problems.  Past experience has 
revealed that there is no normative decision aiding method that is without critics, though many 
techniques have been pretty mature and produced appealing success stories.  On the other 
hand, people’s understanding on sustainability is at an early stage.  Along with knowledge 
progress, decision-making contexts for sustainability may get more flexible and dynamic in the 
coming years.  In this sense, more efforts need to be put into the both modeling sustainability 
and specializing MCDM, in order to tackle real-world decision-making problems in such a way 
that is more case-specific and effective.  
 

APPENDIX A   Process Description of the Williams-Otto process 

Figure 4. illustrates a simplified Process Flow Diagram (PFD) of the Williams-Otto process.  
The plant under consideration manufactures a chemical P at a capacity of 40 million pounds 
per years.  The plant is operated 8000 hours per year.  The process consists of a 
continueously-stirred tank reactor (CSTR), a heat exchanger, a decanter, and a distillation 
column in series.  A portion of the bottom product of the distillation column is recycled to the 
CSTR.  

Figure 4.   Williams-Otto process diagram 

Three second-order irreversible reactions are involved:  
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 Priority with 
respect to C#1 

Priority with 
respect to C#2 

Overall 
priority 

A#1 0.022 0.147 16.9 
A#2 0.032 0.11 14.2 
A#3 0.057 0.084 14.1 
A#4 0.219 0.024 24.3 
A#5 0.294 0.011 30.5 
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C and E are intermediates that have no sale value but can be used as plant fuel.  G is 
assumed to be a discharged waste, which will cause negative environmental effects.  The 
reaction coefficients can be expressed in the Arrhenius form: 

)/exp( TBAk iii −=  

The values of A and B are listed in Table 5. 

                                              Table 5.    Parameters for reaction coefficients 

i Ai (hr) (weight fraction) Bi (
οR) 

1 5.9755x109 12000 
2 2.5962x1012 15000 
3 9.6283x1015 20000 

Interested reader may refer to [1, 2, 7] for parameter values and more background information.  
 

APPENDIX B   Pseudo-Code of the Revised SPEA2 

{ } contains the content of the subroutine immediately above. 
!!   is followed by documentations.  
Italic fonts are subroutine names 

CALL initialization                                       !! Randomly generate initial population 
DO 
    CALL objectives                                        !! Calculate objective functions f1 and f2 
    CALL constraints                                      !! Calculate constraints h (and g) 
    CALL augmented_objectives                    !! Calculate Ω and combine with f1 and f2 
    CALL fitness_assignment          
        {CALL strength                                     !! s(i) = number of individual it dominates 
        CALL raw_fitness                                  !! r(i) = sum of the strength of its dominator  
        CALL density                                         !! d(i) = 0.5*(rank(i)/p)       
             !! p: total population; rank(i): rank of average distance to non-dominated population 
        CALL fitness                                          !! fitness(i) = r(i) + d(i)   
        } 
    CALL fitness_ascent_ranking                   !! Arrange the population in the ascent order of fitness values 
    CALL elite                                                 !! Determine elites in the current population 
        { DO j = 1 , p 
         IF (fitness(i) > 1) THEN                       !! First accept all the individuals with less-than-1 fitness 
             p_elite = j - 1                                     !! p_elite: number of elites 
         END IF 
         END DO 
         IF (p_elite > = p/3) THEN                    
             p_elite = p/3 
         ELSE IF (p_elite < = p/6) THEN 
             p_elite = p/6 
         END IF 
         }        !! if less-than-1-fitness individuals are too many or too rare, use pre-specified elite size. 
IF (gen >= n_gen) EXIT                                         !! Termination criteria  
    CALL variation 
        {DO  
              CALL tournament-selection                     !! Perform tournament selection on the whole population 
              DO  
                   CALL tournament-selection 



 

              IF (champion1 /= champion2) EXIT         !! Two parents have to be distinct  
              END DO 
              CALL crossover                                        !! Crossover is always invoked 
              IF (rannum < mutation_rate) THEN          !! Mutation is invoked at a specified rate 
                  CALL mutation 
              END IF 
          IF (n_new > p-p_elite) EXIT                        !! Stop variation after all the non-elite positions are filled 
          END DO 
        }   
    gen=gen+1 
END DO 
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