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Summary 

The mathematical modeling and simulation of free radical polymerization can provide 

significant insight into the process and resulting products.  Modeling free radical 

polymerization kinetics requires the solution of mass (mole) balance equations for all 

species in the system with appropriate models for the reaction rates.  The number of 

equations involved can be very large for high molecular weight polymers.  This is the 

reason why methods based on averaging techniques like the methods of moments have 

been utilized for these systems.  These methods greatly reduce the number of equations 

and hence the computational complexity of the models.  However, these methods also 

result in a loss of detail, especially related to complexities in the molecular weight 

distributions of living and terminated polymer chains.  This communication describes a 

novel method that reduces the large number of equations in such a model to a very small 

number of vector equations without any loss in information.  This method is amenable to 

solution by relatively simple computational approaches, but would be best solved on a 

processor optimized for vector processing.  Further, this representation can lend itself to 

leveraging the sparseness of the vectors used in the models to further reduce 

computational complexity.  The model has been simulated for the bulk polymerization of 

methyl methacrylate and the results agree well with experimental data and simulation 

results from the literature for low molecular weights.  This system would be uniquely 

useful in deriving detailed kinetic information for complex polymerization systems e.g. 

controlled free radical polymerization approaches. 

 

 



  

1. Introduction 

 

Free radical polymerization (FRP) reactions exhibit a range of complex kinetic events.  

The conversion of monomer to polymer significantly changes the density and viscosity of 

the reaction mixture, which affect transport properties and reaction kinetics.  These 

changes are strongly dependent on the polymer concentration as well as polymer chain 

length and chain length distribution. 

 

Several researchers[1] have tried to model FRP and its associated thermodynamic and 

kinetic phenomena by trying to account for such changes explicitly. They did so by 

considering polymer species of different chain lengths to be individual reactive species 

and modeled the kinetics of polymerization by solving the mass balance equations for all 

the species.[2]  This can lead to thousands, even millions, of equations in complex 

polymerizations, making averaging approaches necessary for simulation procedures to be 

computationally viable.  

 

This problem has been partly addressed by the method of moments (MOM) approach, 

which was computationally less intensive.  The approach transforms the mass balance 

equations for all polymeric species to equations modeling moments of the molecular 

weight distribution (typically the zeroth, first and second moments).[3]  The solution of 

these equations can accurately simulate well-behaved and non-complex polymerization 

reactions with certain limitations.  These limitations have prevented the application of 

this approach in modeling complex polymerization processes.  For example, MOM works 



  

best for polymerizations with unimodal molecular weight distributions and cannot 

accurately describe shoulders or multiple peaks in molecular weight distributions usually 

associated with many FRP systems.  In addition, it has been observed that the reaction 

rate coefficients can change by several orders of magnitude as the average chain length 

changes during the reaction, and could be very different for different chain lengths even 

at the same average polymer concentration[1].  The actual dependence of rate coefficients 

on system parameters cannot be modeled explicitly using the MOM approach.  This can 

result in the failure of this approach to precisely model even relatively simple real-world 

systems.[4]   

 

Averaging procedures have been suggested[5] to overcome this limitation but the problem 

cannot be solved unless the chain length dependence is factored explicitly for individual 

species. The use of averaging approaches results in a loss of detail in the simulation of 

systems with multimodal or broad molecular weight distributions, often seen in many 

industrial products.  Several researchers have used averaging techniques together with the 

MOM approach. Teymour et al[6, 7] developed the so-called numerical fractionation (NF) 

techniques to overcome the limitations of the MOM approach and applied it to gel-

forming systems.  Butte et al modified the method developed by Kumar and Ramakrishna 

(KR method)[8] to predict chain length distribution in bulk[9] and emulsion[10] 

polymerization systems.  Both the methods use the MOM on small partitions of the chain 

length distributions to overcome the problems associated with the approach.  Though 

these methods have been successful at providing detailed chain length distribution 

information, they cannot accurately describe the chain length distribution unless the 



  

population balance equations for each individual species in the system are solved 

explicitly.[7]  

 

The approach described in this communication is directed towards such explicit 

consideration of the chain length effects on kinetic parameters, while facilitating the 

application of suitable computation techniques that reduce the time and efforts needed for 

the simulation.  This approach is based on a sparse matrix[11] representation of the 

polymerization kinetics.  A sparse matrix is one that has a large number of zero elements 

(>> 50 %).  Use of sparse-matrix-specific solution techniques can greatly simplify the 

storage and CPU requirements for solving large number of equations in such a model.  

The first step in the utilization of these techniques is the development of an efficient 

sparse matrix representation of the mass balance equations.  This representation can then 

be subjected to sparse matrix manipulation techniques like partitioning and tearing to 

reduce solution effort and time.[12, 13]  These techniques use concepts from graph 

theory[14] to model information flows in large systems of equations.[15, 16, 17]  The 

approach described in this communication does not employ, but is amenable, to such 

solution methods and could serve as a powerful tool in the modeling, simulation, and 

understanding of chain polymerization processes.  

 

2. Free Radical Polymerization Kinetics 

 

Free radical polymerization is a type of chain polymerization, wherein monomer repeat 

units add on to a propagating radical chain.  Steps in this process include chain initiation, 



  

typically initiated by a radical initiator activated either by temperature or radiation; chain 

propagation (addition of monomer units); chain transfer to monomer, solvent, initiator, 

polymer, or chain transfer agent; and chain termination by combination or 

disproportionation.  The details for each step are well known and have been widely 

discussed in the literature.[18]  Recapping briefly, a typical free radical polymerization 

reaction comprises of the following steps:  

 

2.1 Initiation 

 

I   →   2R•  + Gas 

R• +  M  →   P1• 

2R•   →   I'   (recombined inactive initiator molecule) 

where I is the initiator molecule, R• is the primary initiator free radical, M is a monomer 

molecule, and P1• is the polymer radical of chain length one.  It is typical to not include 

the initiator fragment when describing the polymer chain length.  The gas is typically 

nitrogen or oxygen, evolved during an elimination reaction leading to radical generation 

from azo compounds or peroxides. 

 

2.2 Propagation 

 

Pn • +  M  →  Pn+1• 

 



  

where Pn• is a polymer radical of chain length n and Pn+1• is a radical of chain length 

n+1. 

 

2.3 Termination 

 

Pn• + Pm•  →  Dn  +  Dm (Disproportionation) 

Pn• + Pm•  →  Dn+m  (Combination) 

 

where Dm, Dn, and Dn+m are polymer chains (not radicals) of chain length m, n, and m+n 

respectively. 

 

2.4 Chain Transfer 

 

   Pn• + CT   →  Dn  +  CT• 

 

where CT is the chain transfer agent, which could be a monomer molecule, a polymer 

chain, an impurity, or a chain transfer agent added to increase transfer rates. 

 

Modeling and simulation approaches for the reaction thermodynamics and kinetics of 

FRP have also been extensively reviewed.[1]  The approach used to model the 

polymerization kinetics is described briefly in the next section. 

 



  

3. Modeling Free Radical Kinetics 

 

Kinetics of free radical polymerization are conventionally modeled as a set of mass (or 

mole) balance equations.  These ordinary differential equations (ODEs) can be solved 

individually for each polymer species or converted into equations based on the moments 

of the polymer chain length distribution.  Models for kinetic rate constants, sometimes 

called “gel-effect” models, are used to determine the rate coefficients as a function of 

polymer concentration, chain length, and other reaction parameters. During 

polymerization, the system density changes with an increase in conversion as the 

monomer and polymer densities are typically different.   

 

Chain transfer has been neglected in the following analysis, but can be added as an 

additional term in the mass balance for each polymer species if it is important in the 

reaction schema, as discussed by Penlidis et al.[19]  The following equations represent the 

kinetics of this system:[20] 
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where, 

[I] - Initiator concentration (mol.L-1) 

[M] - Monomer concentration (mol.L-1) 

[R] - Primary initiation radical concentration (mol.L-1) 

[P1] - Primary polymer radical concentration (mol.L-1) 

[Pn] - Concentration of polymer radical of length n (mol.L-1) 

[Dn] - Concentration of dead polymer molecule of length n (mol.L-1) 

[M0] - Initial monomer concentration (mol.L-1) 
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x - Conversion 

V0 - Initial volume (L) 

V - Volume (L) 

Vsolvent - Volume of solvent (L) 

ε − Relative change in density as defined above 

β - Relative fraction of solvent defined as fs/(1-fs) 

fs  - Fraction of solvent volume 

ρp - Density of polymer (g.cm-3) 

ρm - Density of monomer (g.cm-3) 

kp - Propagation rate constant (L.mol-1.sec-1) 

ktc - Rate constant for termination by combination (L.mol-1.sec-1) 

ktd - Rate constant for termination by disproportionation (L.mol-1.sec-1) 

kt - Rate constant for termination (combination and disproportionation)  

(L.mol-1.sec-1) 

kd - Rate constant for initiation (sec-1) 

 

4. A Novel Sparse Matrix Representation 

 

Equation (1)-(11) can be converted to a set of four mass-balance vector ODEs (Equation 

(12)-(15)) after some manipulation.  The assembly of matrices used in these equations 

can then be implemented on a computer using relatively straightforward matrix 

manipulations.[21]  Derived originally from the material balance equations for all the 

species in a polymerization process, these equations completely address the kinetics of 



  

free radical polymerization.  As explained earlier, chain transfer and other side reactions 

can also be added as separate terms to Equation (12)-(15) when applicable.  All one-

dimensional matrices are denoted by a single bar (-) over their name whereas, all two-

dimensional matrices are denoted by double bars (=) over the variable name, as typically 

used in vector notation.  All symbols used have been described earlier, except λo, which 

is the sum of the concentrations of all polymer radicals of all chain lengths. 

 

(12) 
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Where, 
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Most of the matrices used here are one-dimensional and require minimum computing 

resources for both storage and processing.  Bottlenecks in computation will mainly arise 

from handling the larger two-dimensional matrices.  It can be seen that the large 2-D 

matrices used (A and C) are sparse with occupancies much lower than 50 %.  These 

equations can now be solved on a platform that facilitates vector or parallel solution 

techniques, along with a suitable numerical algorithm and methods for the utilization of 

sparse matrix techniques. 

 

The dimensions of each matrix used are shown in Table 1 as a function of n, the chain 

length of the longest active radical chain in this process.  Note that the maximum chain 

length of any molecule is twice of n, which would be created due to termination by 

combination. 
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Table 1. Dimensions of Matrices used in Equation (12)-(15) 

Matrix Dimension (row x column)

A (n+1) x (n+1) 

C (2n+1) x (n+1) 

D (2n+1) x 1 

I 1 x n 

P (n+1) x 1 

P* (n+1) x 1 

Q (2n+1) x 1 

 

The occupancies of matrices A and C can be calculated using Equation (16) and (17) 

respectively.   

( )21
2
+

=
n

nAforOccupancy      (16) 

24
2

+
+=

n
nCforOccupancy      (17) 

 

It can be seen that matrix A, being a predominantly block diagonal matrix, has very low 

occupancy at higher values of n (from 0.039 for n=50, to 0.0002 for n=10,000), whereas 

matrix C has an average occupancy of 0.25, for all n. 

 



  

5. Results  

 

The approach was validated by simulating the bulk polymerization of methyl 

methacrylate[16] based on the kinetic parameters used by Chiu et al.[22]  Simulations were 

run in a MATLAB (Mathworks, Inc) environment on a Sun Blade 1000 processor, with a 

6 GB system memory.  The physical parameters used for the simulation are shown in 

Table 2.   

 

Table 2. Parameters used for the simulation of methyl methacrylate bulk polymerization 

(Chiu et al[22]) 

Parameter Description Value 

ρMMA Density of methyl methacrylate (MMA) 0.973-1.164x10-3(T-273.16) g.cm-3 

ρPMMA Density of poly(MMA) 1.2 g.cm-3 

MWMMA Molecular weight of MMA 88 gm.mol-1 

kp0 Intrinsic rate constant for chain propagation 2.95x107e(-4353/RT) L.mol-1.sec-1 

kt0 Intrinsic rate constant for chain termination 5.88x109e(-701/RT) L.mol-1.sec-1 

kd Rate constant for initiator decomposition 6.32x1016e(-15430/T) sec-1 

F Fractional initiator efficiency 0.58 

 

The simulation results for conversion vs. time and kp/kt calculations used for the model 

are shown in Figure 1.  The simulation results have been compared to experimental data 

generated by Marten and Hamielec.[23]  The reaction rate coefficients were modeled using 

the CCS model developed by Chiu et al.[22]  The parameters used in modeling the rate 



  

coefficients have been summarized in Table 2 for reference.  The dependence of kinetic 

rate coefficients on these parameters is described in Equation (18) and (19).  The 

derivation of the equations as well as details about the parameters used and their 

significance has been discussed by Chiu et al in detail.  Each rate coefficient is modeled 

as a function of the intrinsic reaction rate coefficients and parameters that model the 

impact of changes in concentration and diffusivities. 

     

(18) 

 

(19) 

 

Table 3: Parameters for Calculation of Rate Coefficients (From Chiu et al[22]) 

Polymerization 

Temperature, °C 

[I0] mol.L-1 Θt, min Θp, min A B 

50 0.0258 1.5e3 3.5e3 0.134 0.03 

50 0.01548 2.33e3 3.5e3 0.134 0.03 

70 0.0258 49 2.5e2 0.152 0.03 

70 0.01548 83 2.5e2 0.152 0.03 

90 0.0258 3.8 30 0.163 0.03 

90 0.01548 6.3 30 0.163 0.03 

 

The CCS model was chosen to model the rate coefficients as it has been used by the 

creators to adequately predict the polymerization system simulated here.  The model and 

others based on it were also highly successful in simulating a variety of FRP systems; 
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 though some have criticized the boundary conditions used.[24]  Other models have been 

Figure 1: Conversion (left) and kinetic rate coefficient (right) histories of MMA bulk polymerization at 

50°C (top panel), 70°C (middle panel), and 90°C (bottom panel), at two initiator loadings: [I0] = 0.0258 

mol/L (hollow markers) and 0.01548 mol/L (solid markers). Markers are experimental values23 and 

lines are simulation results. 



  

discussed as more capable and applicable to more generic systems.[24, 25]  However, the 

CCS model was selected to validate this approach as it has been shown to work well for 

the system being simulated and it was relatively simple to integrate into the model.  The 

utilization of more complex models can be incorporated at a later stage to provide more 

information on system specific kinetics as needed. 

 

It can be seen that the conversion-time data correlates well with the experimental data, 

even during the onset of the gel effect. The rate coefficients change as the volume 

fraction of polymer increases in the reaction.  The results also agree well with the 

simulation results presented by Chiu et al.   

Figure 2: Population distributions at various times of MMA polymerization at 90°C, and at [I0] 
= 0.0258 mol/L. 



  

 

The chain length distributions for all polymeric species in the system (newly generated 

radicals as well as terminated polymer) for reaction time of 5, 15, 25, and 30 minutes are 

shown in Figure 2.  Note that the average chain lengths are much lower than the 

experimental system since the distributions are all clipped at Nmax. 

 

The unique feature of this approach is the inherent utilization of sparse matrices in this 

representation.  The incorporation of mathematical techniques that further exploit the 

sparseness of the larger two-dimensional matrices used in this approach would greatly 

reduce the computational resources needed for the simulation.  The ongoing and future 

work will be targeted towards taking advantage of some of these features.  This work 

includes developing a more efficient implementation, using the appropriate level of 

computer resources, as well the incorporation of sparse matrix manipulation techniques 

for simulation using large values (> 10,000) of Nmax.  

 

6. Conclusions 

 

A novel, sparse-matrix based representation of FRP kinetics was developed and 

implemented in a MATLAB environment on available computational resources.  The 

MATLAB environment was chosen not for efficient computation but for its ease of 

implementation and analysis. The methodology was validated by comparing the 

simulation results from this approach to experimental data as well as other simulation 

results.  The results correlate very well with conversion vs. time data from both the 

experimental and simulation results (using another modeling approach) for the chosen 



  

test system.  The comparison of the molecular weight data was only possible at lower 

chain lengths due to computational limitations. Ongoing and future efforts will include 

the optimization of the computational implementation to address this shortcoming. This 

approach provides detailed kinetic information on the population distribution of the 

system at any given time, including computed distributions of living and termination 

polymer chains.  This level of detail could be very useful in the simulation of complex 

free radical polymerization approaches. 
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