
Modeling Chain Stiffness and Attractive Interaction for Polymeric Systems 
in the NPT Ensemble 
 
 
Saidu M Waziri, Nasiru M Tukur and Esam Z Hamad 
Department of Chemical Engineering, King Fahd University of Petroleum & 
Minerals, 31261 Dhahran, Saudi Arabia 

 
Abstract 
 

Theoretically based equations of state (EOS) serve as practical tools for 
obtaining equilibrium properties of polymers. Most of the theoretically based EOS 
in current use are pressure-explicit. However, chemical engineering operations 
are usually carried out at constant temperature and pressure thereby making 
volume-explicit EOS more practically relevant.  
 
Significant fractions of engineering polymers are made up of non-flexible chains 
and yet the EOS for polymeric systems in current use do not explicitly take 
account of chain stiffness. In this work, we present a model for polymeric 
systems which include the effect of chain stiffness and attractive contributions 
based on a simple volume-explicit hard chains EOS.  Chain stiffness is modeled 
based on non-additive size interactions. We used approximations based on a 
known exact solution for one-dimensional square well fluid to model the attractive 
contributions in three-dimensional polymeric system.  
 
Introduction 

Development of equations of state (EOS) for predicting the pressure-
volume-temperature (PVT) behavior of polymeric systems is an important activity 
in view of its relevance to process design and material development. There are 
various EOS, both theoretical and empirical, given in the literature for modeling 
the PVT behavior of polymers. Excellent reviews on the subject are presented by 
Rodgers (1993) and Lambert et al (2000).   
 

Polymer systems because of their large molecular size exhibit quite 
different PVT and phase-behavior from non-polymeric systems. One of the most 
striking features of polymers is their non-volatility and hence vapor-phase volume 
is non-physical for such systems. Despite this fact, existing theoretically-based 
polymer EOS are pressure-explicit and mostly cubic in volume. Moreover, in 
chemical engineering most operations are carried out at constant temperature 
and pressure and the use of pressure explicit equations with multiple-volume 
roots is inconvenient due to the added numerical procedure of finding the correct 
volume. This is what makes volume-explicit EOS for polymers such as the Tait 
equation (Danner and High,1993) to have wide acceptability among researchers. 
However, the empirical nature of the Tait equation limits its extension to polymer 
mixtures and copolymers. Thus, there is need to develop a volume-explicit EOS 
for polymer systems with sound theoretical basis. 
 



In a previous study Hamad (1997) has developed a volume-explicit EOS 
for hard spheres and mixtures of hard spheres based on a summation of the 
pressure virial expansion. He later extended the equation to hard chains of 
tangent spheres and their mixtures (Hamad,1998) through utilization of contact 
pair correlation functions in the isothermal-isobaric ensemble, NPT, to form a 
chain out of individual monomers. The main purpose of this paper is to present 
our current effort in further extending the equation to real polymers. We intend to 
achieve this by using non-additive size interactions to model chain stiffness and 
by adding a term to account for the effect of attractive interactions in the EOS.   
 
Model Development 
 
Repulsive Contribution. It is theoretically known that at high pressure, when the 
average separation between molecules is small, fluid structure is predominantly 
shaped by repulsive forces. For this reason, EOS are usually built around 
accurate repulsive equations for small molecules.    
 

In this work, we consider the following hard-chain equation to represent 
the repulsive part of our EOS: 
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where m is the number of segments, 3 / 6p P kTπσ=  is the dimensionless 
pressure, P is the pressure, T is the temperature and σ is the diameter of the 
hard sphere. It is important to note that the above equation is volume-explicit and 
its derivation is given elsewhere (Hamad, 1998).  The equation is simple and 
satisfies fundamental boundary conditions required of a theoretical EOS.  
 
Attractive Contribution. Due to the weak nature of attractive forces on fluid 
structure, perturbation methods are usually employed to describe the contribution 
of attractive interaction to the EOS of real molecules. There are various 
expressions used for attractive contribution in pressure-explicit EOS.  The 
simplest among them is the van der Waals attractive form and it is the form used 
in the perturbed hard-sphere chain EOS developed by Song et al (1994). The 
attractive term in the SAFT EOS is based on the power series initially fitted by 
Alder et al. (1972) to molecular dynamics data for square-well sphere. This was 
subsequently modified by Chen and Kreglowsky (1977) to model attraction 
between segments. Other works employing square-well as attractive term are the 
perturbed hard sphere chain from square-well  coordination number EOS (Peng 
and Wang, 1999), the EOS for square-well chain fluids (Gross and 
Sadowski,2000) and Paredes et al.’s (2001) EOS for polymers using square-well 
potential with variable width. We are not aware of any volume-explicit attractive 
term for real systems (i.e. three-dimensional bodies). Perhaps, this is because 
theoretically-based polymer equations of state are traditionally based on 



pressure-explicit repulsive terms. But fortunately, in contrast to the canonical 
ensemble, exact analytical solution for equation of state of one dimensional fluids 
interacting with various potential models can be found in the isothermal-isobaric 
ensemble (Thompson, 1972). Our approach, therefore, is to use exact results for 
one-dimensional fluid interacting via square-well attractive potential as a means 
for analyzing and obtaining approximate form for the attractive contribution in 
three-dimensional fluids.  
 

For a one-dimensional fluid in which nearest neighbors interact via the 
square-well potential: 
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where ε  is the energy depth of the square well, a is length of the hard rod and λ  
is a characteristic well width parameter. The thermodynamic limit of the 
compressibility factor in isothermal-isobaric ensemble for a system of N one-
dimensional molecules interacting via the potential given in equation 2 is found 
(Kihara, 1987) to be given by 
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where p Paβ= is the dimensionless pressure for the one-dimensional fluid and 

1 exp( )q βε= − − .The first two terms on the right hand side give exactly the 
expression for compressibility factor of hard-rod. The third term represents the 
attractive contribution (Zatt) due to cohesiveness of the rods.  
  

The attractive part can be rearranged to give  
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The above equation, which is for a one-dimensional fluid, is plotted in 

figure 1 for 1.5λ = at different values of reduced temperature, 1T kT ε βε∗ = = . 
We also present a plot of attp Z against exp( ( 1))p λ −  for spherical square-well 
molecules in figure 2. The Zatt values used in figure 2 are obtained by 
subtracting the contribution due to repulsive forces from the overall 
compressibility factor of square-well simulation data given by Tavares et al 
(1995). Comparison of the two figures shows that the three-dimensional square-



well fluid qualitatively obeys the same functional relationship to the one-
dimensional fluid except at low temperatures and low pressures where slight 
deviation from linearity is observed. This suggests that the attractive contribution 
of square-well fluids in the NPT ensemble may be approximated by the following 
relation: 
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where 1α  and 2α are constants.  While 2α  is considered to be temperature 
dependent the other constant 1α  is assumed to be a function of the well-width 
parameter ( λ ) only and therefore temperature independent. The two constants 
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Figure 1. Plot of equation 4 with 1.5λ = at 4 different reduced temperatures. 
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Figure 2. p/Zatt vs exp((λ-1)p) for  three-dimensional square-well fluid. Points are deduced from 
simulation data of Taveras et al (1995) with λ=1.5. 
 
 
 
are related to the known exact second virial coefficient for square-wells by the 
relation 

1 2attB α α=        (6) 
 
where  
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Contrary to our expectation, the above formulation was found to be unable 

to accurately represent available simulation data.  Although it is qualitatively okay 
and satisfies low pressure and high pressure limits correctly, it fails to 
quantitatively fit the simulation data.  An extension of the 1-D form is therefore 
proposed as follows: 
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This equation contains four parameters and it reduces to the 1-D form 

when 3 0α =  and 4 0α = . The parameters, 2α  and 4α , are related to the other 



parameters and the second and third virial coefficients of square-well fluid 
through the following equations: 
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where att HSB B B= −  and att HSC C C= − .The expression for attB  is already given in 
equation 7. Similar to the second virial coefficient, the third virial coefficient of 
square-well fluid is also known exactly (Kihara, 1953). In the density form, the 
exact third virial coefficient for1.5 2.0λ≤ ≤  is given by 
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where 1e βε∆ = −  and 
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The pressure virial coefficient can be calculated from the density virial coefficient 
by using the equation ( )2C C B RT′ ′= − . The other parameters, 1α  and 2α , are 

determined using simulation data and found to be  1 0.5α =  and 3 6α =  for the 
case of 1.5λ = .  
 

Figure 3 shows a comparison of equation 8 to Zatt data deduced from 
simulation results of Tavares et al. (1995). The equation performs well at high 
reduced temperatures but deteriorates at low reduced temperatures.  
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Figure 3. Attractive contribution to compressibility factor as a function of reduced pressure. The 
points are deduced from simulation data while the curves are drawn using Eq. 8.    
 
 
 
Equation of State 
 

The overall compressibility factor for a square-well chain molecule of m 
segments can be represented as  
 

attHCZ Z mZ= +      (15) 
 
Combining equations 1 and 8 according to the above equation yields the 
following: 
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For square well spheres (m=1, 1.5λ = ) equation 16 compares favorably with 
simulation data of Tavares et al(1995) as can be seen in Figure 4.  
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Figure 4. Compressibility factor as a function of reduced pressure. The points are simulation data 
while the curves are drawn using equation 15 with λ=1.5. Symbols have the same meaning as in 
Figure 3. 
 
 
Chain Stiffness 
 

In this section, we present the modeling of chain stiffness using the 
concept of non-additive size interactions. For spherical segments, non-additive 
size interactions are given by 
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where ij∆ is the nonadditivity parameter.  
 

To model chain stiffness we need at least three units. Figure 5 shows the 
behavior of tangent spheres with additive interactions. The three spheres can 
move over a large angle. To restrict this movement (make the chain stiff) we 
introduce non-additive interactions between sphere 1 and sphere 3 as shown in 
figure 6. The size interaction between these spheres is now ( ) σσ ≥∆+ ij1 .  
Beyond a certain bending angle an overlap between the non-additive spheres 1 
and 3 will prevent further bending. The maximum allowable bending angle can be 
controlled by the value of ij∆ . Clearly for ( ) σσ 21 =∆+ ij  no bending is possible. 
The extension of this idea to chains with many units is obvious. One can in fact 
have different stiffness in different segments of the same chain. Again every 



sphere has to be considered a different species in order to get a stiff size-additive 
chain.  

 
Applying the above procedure will require the pair correlation function for 

non-additive spheres. Hamad (1999) has tested the above model by performing 
molecular dynamic simulation of non-additive spheres. We are presently trying to 
develop analytical models for the pair correlation function of non-additive spheres 
in the NPT ensemble. 

 

 

 

 

 

 

 

 

Figure 5: Chain flexibility in tangent additive hard spheres 

 

 

 

 

 

 

 

 

 

 

Figure 6: Limited chain flexibility in the presence of non-additive interactions (dashed lines) 
between every other segment. 
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Conclusions 
 

We have developed an equation to account for attractive contribution to 
the compressibility factor of real fluids in NPT ensemble. The model equation 
complements the volume-explicit equation for hard-chains developed in a 
previous study by one of the present authors. The equation accurately represents 
simulation data at high pressure. We have also discussed how to model the 
stiffness of chain-molecules using the concept of non-additive size interactions.  
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