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New membrane materials are developed in an empirical manner without the advantage of a truly 
scientific a priori design procedure.  Accordingly, a better theoretical understanding of coupled 
transport through cross-linked polymers is needed.  An analytical formulation of the free energy 
provides an a priori concentration dependence of the diffusion coefficient.  The model requires 
only two independently determinable equilibrium properties – the crosslink density (which is 
available from mechanical tests) and the thermodynamic interaction parameters (which can be 
measured in swelling experiments in the pure solvents).   
 
There have been many models developed for transport in pervaporation membranes.  Transport 
through pervaporation membranes has been described by various solution-diffusion models that 
explicitly consider crosslinking. 1-3, There are also many empirical, semi-empirical, and 
theoretical models used to describe the transport of solute in a membrane.  The PI has used the 
UNIFAQ-FV model and observed reasonable predictions as shown below, 4 the same 
UNIQUAC-FV gave good predictions for the sorption of ether and ester in poly urethaneimide.  
Correlation based on the UNIFAC model does not reflect the effects of crosslinking and fails to 
account for diffusion effects.  A study by Molina et al. 5 used the thermodynamics of irreversible 
process to obtain a close fit with experimental data for the pervaporation of ethanolic solutions 
through a PDMS membrane using different pressures on the permeate side.  However, the model 
does not provide the fundamental understanding required for membrane development.  Maxwell-
Stefan theory has been applied to pervaporation6, and does combine the solution-diffusion model 
and the effects of coupled diffusion; good agreement between experimental data and theoretical 
predictions was reported. 7  The results of a comprehensive review of models for pervaporation 
by Lipnizki and Tragardh 2 suggested the need for a new combination of models.  That is, the 
results from this survey suggest that no comprehensive model has appeared; they maintain at 
least a small number of adjustable parameters that are fit to the data. 
 
In 2003, Barriere and Liebler published a model for the pervaporation performance of 
crosslinked polymers. 3  The model gives analytical expressions in terms of the respective sizes 
of the two solvents relative to the polymer, interaction parameters, and the viscosity ratio 
between the two solvents but only for the limiting case of small swelling during the 
pervaporation process.  That is, when the interactions are not significantly affected by the 
presence of the penetrants.  It does not include the effects of the concentration dependence of the 
diffusion coefficients and flux coupling.  Our recent work has moved to capture all of these 
important missing effects.   
 
In the original Flory-Rehner theory, 8 two contributions to the free energy of a solvent swollen 
crosslinked elastomer are present.  Namely, mixing and deformation terms are written.  For 
favorable energetics, the network wants to swell and this causes the polymer chains to become 
extended.  Extension of polymer chains is entropically unfavorable because it limits the number 
of conformations between the ends that are fixed by crosslinking – this leads to an entropically 



driven restoring force.  We have extended this model to include the effects of swelling in the 
presence of two solvents.   
 
The underlying free energy of the system is written as a combination of two contributions, 

M EG G G∆ = ∆ + ∆        (1) 
in which ∆GM represents the free energy of mixing and ∆GE represents the elastic term.  The 
distinction from the usual Flory-Rehner argument is that the free energy of mixing is taken as 
that of a ternary system rather than the usual binary one.  That is, 
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In Equation 2, χij is the interaction parameter between species i and j; subscripts A and B 
represent the two solvents and M the polymer network.  The network is envisioned as 
homogenous with a volume-averaged value of the interaction parameters of the blend 
components.  The blend creates a mean-field environment for the penetrating solutes.  The elastic 
term assumes the same form as in Flory-Rehner theory, 
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Combination of the two  terms and appropriate differentiation provides expressions for the 
chemical potentials.  In the solvent phase, the mixture is modeled by the binary variant of 
Equation 2 for solvents A and B.   
 
The resulting expressions for the chemical potentials of species A and B in the membrane are: 
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Ιn the feed solution, the appropriate forms are, 
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where subscript “m” corresponds to the membrane phase while the subscript “s” corresponds to 
the solvent feed.  Equilibration of the chemical potential expressions for each penetrant allows 
for solution of the phase equilibrium.  Results from the calculations are now presented. 
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Figure 1. Equilibrium swelling of a two solvent 
in a membrane system as a function of crosslink 
density and the ratio of penetrant molar volumes  
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Figure 2. Equilibrium swelling of two 
solvents as a function of the feed 
composition.   

Figure 1 presents the equilibrium volume fractions of the solvents in the membrane phase for a 
50:50 feed mixture in contact with the rubber – in this case, all interaction parameters are set 
equal to zero.  Solubility differences between the two penetrants reflect differences in molar 
volumes.  Figure 1 clearly demonstrates the profound that both molecular size and crosslinking 
effects are captured by the model.   
 
Figure 2 shows the concentrations of species A and B in the membrane as the single interaction 
parameter χBM  is varied (all other interaction parameters remain at zero). In the absence of B-
interactions (χBM =0), the concentration in the membrane is linearly dependent on the feed 
concentration in accordance with Henry’s Law.  Under such conditions, strict solubility 
selectivity is not possible; the component with the greater concentration will have a greater 
solubility.  Increasing values of χBM leads to less of component B in the membrane 
 
Using the physically realistic free energy outlined above, a theoretically sound approach is to 
work with the chemical potentials directly as the driving force for diffusion; instead of Equations 
13 we adopt, 9 
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where instead of concentration dependent practical diffusion coefficients, the fundamental 
Onsager coefficients are introduced.  In this approach, the Onsager coefficients are taken as 
symmetric in accord with arguments from non-equilibrium thermodynamics, the symmetry of the 
coefficients is also adopted (i.e. Ω12=Ω21).  The perceptive reader will ask how non-symmetric 
coupling (as in the case where one component highly swells the membrane while the other does 
not) can be captured in a model having symmetric coefficients?  The answer to this apparent 
contradiction can be resolved through application of the chain rule for differentiation applied to 
Equations 6 in order to use volume fractions as the independent variable. 
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Substitution of this argument into Equations 6 provides, 
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Equations 8 are the appropriate framework for understanding coupled transport in swollen 
rubbery membranes.  For readers knowledgeable about non-equilibrium thermodynamics, the so-
called “solvent-fixed” frame of reference has been adopted; 10-12  the polymer membrane is fixed 
in space and required to have a zero valued flux.  This fact avoids the redefinition of driving 
forces to satisfy constraints of the Gibbs-Duhem equation.   
 
Here we will show that the following Ansatz for the Onsager coefficients, 
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provides the correct physical response of the system.  Equations 9 are simply concentration 
scaled versions of the Stokes-Einstein relationship that maintain the required symmetry of the 
Onsager relationship; RA and RB are effective radii of the permeants and the subscript AB denotes 
the geometric average of the pure component values.  Adoption of this form for the Onsager 
coefficients is equivalent to setting the values equal to a concentration scaling pure component 
self-diffusivities (Dii).  Self-diffusion coefficients are extensively cataloged and can be estimated 
by a number of correlations and group contribution methods, accordingly these are fixed known 
values, not adjustable parameters.13  Substitution of Equations 9 into Equations 8 provides the 
following parameter free model, 
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Equations 10 are an important new development in understanding cross-coupling transport in  
multicomponent polymer networks.  All of the numerical coefficients, which number only 5 
(χΑΒ, χΑΜ, χΒΜ, νe, DAA, DBB ) are independently calculable or measurable.  Also, comparison of 
Equations 10 with 5 leads to a form for the transport diffusion coefficients that is very similar 
to one that is often assumed; we obtain, 
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whereas, a commonly assumed form used to capture thermodynamic non-idealities is, 
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Our new findings show that the previously assumed form is missing important features including 
the correct dependence of coupling effects on the cross-derivative of the species chemical 
potential.  Another encouraging result is that the coupling transport diffusivities, DAB, are 
calculated to be negative – negative terms are often observed experimentally.14  Because of page 
limitations, the concentration dependencies are not plotted, however, they are directly calculable 
using Equation 11 and its analogues – the only parameters of the model are χΑΒ, χΑΜ, χΒΜ, νe, 
DAA, DBB  and these are independently determinable. In some instances, the crosslink density 
dependence of χΑΜ and χΒΜ must be included. 15, 16 
 
At this juncture, membrane performance can be calculated.  The only assumptions needed are 
that the feed and permeate phases are in equilibrium with the membrane and that the permeate 
concentration is approximately zero on the downstream side.  The permeance of each species is 
directly calculable by integrating the flux, for example, 
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So that the permeate composition may be predicted as a function of the feed composition, 
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In addition, the individual contributions to the flux due to coupling can be computed.  Because of space 
limitations, we focus on the membrane performance as evaluated by permeate composition 
 
Figure 3 presents results for the permeate concentration as a function of the ratios of molar 
volumes for the two species.  In the absence of enthalpic interactions, the smaller species is 
preferentially permeated as expected on physical grounds.  Figure 4 shows the permeate 
composition as a function of the χBM interaction parameter. The results are again highly 
gratifying.  Decreasing the favorable energetics of component B with the membrane as χBM 
changes from –1, to 0, to +1 yields a permeate increasingly enriched in component 1 as would be 
expected on physical grounds.  It is important to understand that the selectivity presented is 
greater than the solubility selectivity alone; we have captured the salient features of diffusion 
selectivity as well as solubility selectivity!  Various shapes of the permeate-feed curves 
corresponding different cases in the literature can be reproduced by the model. 
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Figure 3. Predicted permeate composition vs. 
feed composition as a function of molar 
volume ratio; interaction parameters are zero-
valued leading to size selectivity only. Size 
effects on both solubility and diffusivity are 
captured. 
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Figure 4. Predicted permeate composition vs. 
feed composition as a function of χBM (other 
interaction parameters are zero) for equal molar 
volumes; including the effects of diffusion 
selectivity produces greater than the solubility 
selectivity alone.

Conclusions 

Based on an analytical free energy and rigorous arguments from non-equilibrium 
thermodynamics a new model for pervaporation is developed which includes an a priori 
prediction for the concentration dependence of the diffusion coefficients.  These predictions 
allow for the prediction of membrane performance in applications.  The new model is based on a 
few independently determinable material properties and resolves long-standing issues regarding 
coupled penetrant permeation in rubbery materials, a subject that has received considerable 
experimental attention but relatively little theoretical consideration 
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