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Synopsis

Energetic materids including gun propdlants, solid rocket fuds, and pyrotechniques involve polymeric
binders filled with energetic particles at concentrations that generaly approach the maximum packing
fraction of the solid phase. The high volume fraction of solids, which could be as high as over 80 percent
by volume, gives rise to viscopladticity coupled with wall dip. Thus, the characterization of the
rheologica behavior of the energetic formulations necessitates methods for the determination of the wall
dip velocity vaues and the true wal shear rate and some way of determining the yield dtress of the
suspension. Here such methodologies for the characterization of the shear viscosity materid function
employing various basc viscometric flows, i.e, capillary, rectangular dit, steady torsona, cone-and-
plate and squeeze flows are outlined. The energetic suspension is assumed to be incompressible and
flow under fully-developed conditions subject to gpparent dip. The apparent dip layer is assumed to
consst soldy of the binder of the energetic formulation and its thickness is assumed to be independent
of the flow rate. Both the drag induced (plane Couette) and pressure induced (capillary and dit) flows
generate the same dependencies of the dip velocity on the shear stress for Newtonian and nor:
Newtonian binders under isotherma and creeping flow conditions. Navier's dip coefficient, which
relates the wal dip velocity to the shear dress, is determined to be smilar for dl three flows and is a
function of the apparent dip layer thickness and the shear viscosty of the binder. The assumed
gpparent dip mechanism provides dip velocity \elues that are consgtent with the traditiona Mooney
method and furthermore alows the determination of the true shear rate of the energetic suspension at the
wall. The yield stress vaue of the energetic suspension is determined as a byproduct of the wall dip
andysis. The characterization of the rheologica behavior of the energetic suspension generdly requires
multiple methods overlagpping in their shear rate ranges to be gpplied. The undergtanding of the

rheologica behavior of the energetic materid isamugt for its processing under safe conditions.



Introduction

Energetic suspensons including solid rocket fuels, gun propelants and pyrotechniques ae
concentrated suspensions of particulate solidsin polymeric binders. The rheologica characterization of
such concentrated suspensions is complicated by their viscopladticity [Bingham (1922)], ther
ubiquitous dip at the walls of the rheometers [Reiner (1960)] and various types of migration [Leighton
and Acrivos (1987)] and structure development effects [Metzner (1985)]. Capillary, dit and steady
torsond flows are most frequently employed for the characterization of the wal dip behavior of
sugpensions [ Yilmazer and Kalyon (1989); Barnes (1995)]. Among these three flows, historicdly the
capillary flow has been the most commonly applied since the theoretica basis for the wal dip andysis
in capillary flow has been established since 1931 [Mooney (1931)]. The methodology of “Mooney
method”, involves changing the surface to volume ratio of the capillary die, i.e, by usng capillary dies
with differing diameters a congant length over diameter raio. The wal dip versus the wall shear
sress behavior of a number of concentrated suspensions has been characterized using the Mooney
andyss method [Yilmazer and Kalyon (1989 and 1991); Kayon et a. (1993); Ard and Kayon

(1994); Michienzi et al. (1997); Suwardie e dl. (1998); Kalyon et al. (1999); Prickett et . (2003)].

The adoption of the Mooney method to steady torsiona flow has been carried out by Y oshimura and
Prud’homme by changing the surface to volume ratio of the rheometer, i.e., the gap between the disks
[Y oshimura and Prud’ homme (1988)]. Kdyon et d. (1993) have investigated the applicability of this
correction method to steady torsond flow by comparing the wal dip velocity vauesinferred from the

gap dependence of the apparent viscodty, obtained upon the use of Mooney andlysis, with the wall



dip velocity versus wall shear dress data obtained independently by using a sraight-line marker

technique in steady torsond flow.

A combination of drag-induced (steady torsona flow) and pressure-induced (capillary) flows was
used to characterize the wal dip veocity vaues over a broad range of shear stresses [Yilmazer and
Kayon (1989) and Kayon et d. (1993)]. These sudies have shown that the wall dip behavior
remains the same for both flows, suggesting that the mechanisms of wal dip are likely to be the same
for both the drag induced and pressure induced rheometers. Various methodologies were aso
developed to characterize the “true’ (dip corrected) shear viscosity of the suspension upon the
determination of the wal dip velocity versus wal shear stress behavior [Yilmazer and Kayon (1991);
Ard and Kayon (1994); Kadyon et. d. (1993); Kayon (2003)]. The determination of the wall dip
veodities by sysematicaly changing the surface to volume ratio of the rectangular dit die rheometer
has ds0 been caried out [Kdyon et d. (1997)] in conjunction with an in-line dit die with a
continuoudy adjustable gep [Kayon and Gokturk (1994)]. The gpplicability of the inverse problem
solution techniques to parameter estimation of viscopladtic fluids, subject to wal dip, was dso

investigated [ Y eow et d. (2003); Tang and Kayon (2004)]

The migraions of particle and binder during viscometric flows of concentrated suspensions are
affected by wadl dip. Acrivos and co-workers have determined the wal dip velocity vaues of a
concentrated suspension from shear-induced particle migration effects occurring in Couette flow [Jana
et d. (1995)]. Allende and Kayon (2000) have demondtrated the effect of wall dip on the migration
of particles in the transverse to flow direction in Poisedille flow. The wal dip of the suspension aso

affects the filtration-based migration of the binder.



The migration of the particles represents a quality issue, Snce it can be assumed that the particles with
the smaler diameters, i.e, the greater surface to volume ratio, would give rise to significant differences
in burn rates. Thus, the effect of sgnificant migration of particles in the transverse to flow direction
would be to dter the burn rate digtributions across the grain. On the other hand, the migration of the
binder in the axid flow direction (in the direction of the pressure gradient) represents a serious safety

issue,

As shown by Yilmazer et d. (1989a) and Yaras et a. (1994) the migration of the binder depletes the
concentration of the binder in the processor. In extreme casesiit is shown that the suspension becomes
unprocessable. The migration of the binder phase is believed to be the cause of some of the incidents.
For example, in one case involving a sSingle screw extrusion process the binder wax was observed to
exude out of the die of the extruder firg followed by an exploson. As shown by Yilmazer et d.

(19893), this incident fits the grinding mechanism that ensues in the extruder when the sugpension in

the mixing volume loses some of its binder, becomes solid-like and the continuation of the rotation of

the screws leads to the grinding of the particles of the suspension.

Since the concentration of solids approaches the maximum packing fraction in most energetic
suspensions, the rheological behavior and the processability of energetic suspensons are very senditive
to the amount and didribution of ar entrained during processing [Kayon et &. 1991 &. Air
entranment is related to the geometry and operating conditions employed during processing,

especidly on the degree of fill digtribution in the continuous processor [Kalyon et d. 1991 b]. Thus,



the shear viscogty and wall dip behavior of a given sugpension can be dtered on the basis of taloring

itsair content in the confines of the processor [Kalyon et d. (1991)].

Thus, the experimental methods of obtaining the wall dip behavior of energetic sugpensons as afunction
of the wal shear dress are avalable. However, currently there is no a priori method of estimating and
predicting their wall dip behavior. Furthermore, the mechanisms involved in the development of the dip
velocity behavior are not clear. Findly, there is no clear-cut methodology for the determination of the
yield gress vdue of an energetic suspension. Here the development of the gpparent dip mechaniam
upon the formation of athin dip layer a the wal, conasting soldy of the binder, is used as the bass for
solving the velocity digtributions of viscoplagtic fluids in plane Couette, capillary and rectangular dit
flows and the determination of the corresponding wall shear rate. These digtributions adlow the
determination of the rel ationships between the wall dip velocity and the shear siress on one hand and the
development of the flow curves for these rheometers on the other hand. The consgtercy of this
mechanism with the traditiond Mooney method, for the determination of the dip velocities, is dso
investigated. Findly, corrdations of the wal dip behavior with various properties of the concentrated

suspensions are sought.

Apparent dlip mechanism

During the flow of a suspension of rigid particles the particles cannot physicaly occupy the space
adjacent to awall as efficiently asthey can away from the wall. Thisleads to the formation of generdly
reaively thin but dways present layer of fluid adjacent to the wdll, i.e,, the “apparent dip layer” or the
“Vand layer”. Green detected this layer as early as 1920 in the flow of paint sugpensions under a

microscope [Green (1920]. According to Bingham: “dip comes from alack of adhesion between the



materid and the shearing surface. The result is that there is a layer of liquid between the shearing
surface and the main body of the suspension and flow takes place in this layer according to the laws of
viscous rather than plagtic flow” [Bingham (1922)]. If the digperson medium conssts of a structured
fluid, its shear viscosty will vary with Structuring parameters. For example, it has been shown that in
the case of dleic acid forming the gpparent dip layer the orientation of the oleic acid molecules,
parald to the wal, reduces “friction”, i.e., oleic acid acts as a lubricant [Reiner (1960)]. On the other
hand, when the molecules of oleic acid are oriented norma to the wall “friction incresses’, i.e,, oleic

acid a the wal acts asa”"roughening layer” [Reiner (1960)].

The development of this gpparent wal dip layer has important ramifications in processng and
manufacturing, process control, rheologica characterization and properties of energetic suspensions.
The formation of a dip layer during processing in dies, extruders and in various molding, and shaping
machinery, changes the processability characterigtics of the energetic suspenson. For example, in
gngle and twin screw extruson wal dip reduces the pressurization rate d the extruder and its
digributive and digpersve mixing capabilities [Kadyon (1993, 1995)]. In die flows wal dip reduces
the pressure drop, the viscous energy dissipation and particle migration effects [Allende and Kayon
(2000)].

The formation of the dip layer thickness does complicate efforts to characterize in-line the physica
and chemicd characteridtics of energetic suspensions during manufecture.  For example, various
sensors that are based on infrared signas need to penetrate beyond the thickness of the dip layer to
generate data, which are representative of the bulk of the suspension [Kalyon (1993, 1995)].
Furthermore, the dip layer becomes a "skin" upon solidification of the sugpension upon processng,
and dters the burnrate, surface smoothness and mechanica properties of the extrudates of the
energetic suspenson.  Thus, the devdopment of the dip layer during deformation and flow of
energetic suspendons is an important structuring effect with important ramifications for  energetics

manufacture.



Here it is assumed that the apparent dip layer thickness, d, of an energetic suspension is free of
particles and conssts solely of the binder of the energetic suspenson. This mechanism is depicted in
an exaggerated manner in Figures 1 and 2, which show the gpparent dip layers formed next to the
wdls in plane Couette flow and capillary/rectangular dit flows, respectively. For concentrated
suspensons the shear viscosdty of the binder of the suspenson will be sgnificantly smdler than the
shear viscosity of the bulk of the suspenson away from the wall, giving rise to a step change in the
dope of the velocity digtribution. Since the thickness of the dip layer, d, is Sgnificantly smdler than the

channd gap, the formation of the dip layer gives the gppearance of wall dip; hence the “gpparent dip”
a thewall.

Let us probe the vdidity of this mechanism by directly andyzing the extrudates of an inert
concentrated suspendion, i.e, “aprocessng smulant”. The sugpension used for this demongtration
has 76.3% by weight of KCl particles (61.9% by volume) incorporated into a binder conssting of a
terpolymer based dastomer (Grade 4404 avallable from Zeon Chemicds emulson polymerized
terpolymer of ethyl acrylate, butyl acrylate and hydroxyl cure Ste monomer) plagticized with adioctyl
adipate, DOA, pladticizer avalable from Easman Chemicad Company. The extrudates of this
suspension could hold their shapes upon exit from a cepillary die. The Sze digribution of the low
aspect ratio KCl particles is bimodal with 31% of the KCl congasting of particles with a mean
equivaent diameter of 72 microns and 69% of the KCl particles exhibiting a mean equivaent diameter

of 176 microns.

The maximum packing fraction of the KCl particles is estimated as 0.68 following the method of
Ouchiyama and Tanaka [Ouchiyama and Tanaka (1984) and Fiske et d. (1994)]. The harmonic
mean diameter of the KCl particles is 121 microns. The suspension was extruded a 71 °C, from a
capillary rheometer usng various dies with differing diameters. The extrudates were collected,

cryogenicaly fractured to expose their cross-sectiond areas and their cross-sections were andyzed



for the didributions of the binder and the particles usng scanning eectron microscopy and energy

dispersve x-ray andyss.

Figure 3 shows a typicd scanning eectron micrograph (magnification ratio of 75X) of an extrudate
section adjacent to the free surface of the extrudate. The diameter of the extrudate is 9 mm and thus
only asmadl portion of the extrudate is captured in the micrograph. The thickness digtribution of the
particle-free binder layer found a the wal was determined a higher magnifications over the same
section. Some of the identified particles of KCI are shown hatched, while the apparent dip layer is
indicated as the black zone located adjacent to the free surface of the extrudate. The determination of
the thickness didribution of the particle-free gpparent dip layer reveded a mean vadue of 10.8
microns, a standard deviation of 6.3 microns and a range of 2 to 30 microns. Thus, the ratio of the
mean thickness of the dip layer over the harmonic mean particle diameter of the rigid particles of the

suspension is about 0.09.

Thisratio isin the same approximate range of the earlier estimates of the ratios of the thickness of the
goparent dip layer over the mean particle diameter determined for concentrated suspensions with
Newtonian binders and non-colloidal particles. For example this ratio was determined as 0.06 by
Yilmazer and Kadyon (1989) for a sugpengon filled with 60% by volume of ammonium sulfate
particles and was determined to be 0.063 by Jana et a. (1995) for suspensions filled with poly(methyl
methacrylate) particles in the range of 46 to 52% by volume. The ratios of the dip layer thickness over
the particle diameter were determined to be 0.037 and 0.071 for glass beads and Al particles
suspended in a Newtonian hydroxyl terminated polybutadiene binder, respectively [Soltani and
Yilmazer (1998)].

Given this gpparent dip mechanism what factors affect the development of the wall dip condition for
an energetic suspension under steady state conditions? Is the apparent dip layer formation mechanism
of the energetic materid compatible with Mooney’s method for the determinaion of the wdl dip



veocities? The assumptions for the andysis to follow are derived from those used by Reiner who
assumed that the gpparent dip layer of a suspenson behaved as a Newtonian fluid [Reiner (1960)]:

a) The gpparent dip layer congsts solely of the binder of the suspenson and itself adheresto
thewal.

b) The thickness of the goparent dip layer is sufficiently smal so that the separation of the
binder from the bulk suspension to form the dip layers does not affect the shear viscosity
of the suspension.

c) The thickness of the gpparent dip layer is not affected by the radius of the flow channel
nor the volumetric flow rete.

d) The binder flud forming the apparent dip layer and the bulk suspenson are

incompressible and can be represented as generdized Newtonian fluids:

Veocity Distributions of Viscoplastic Suspensions with the Apparent Slip Mechanism for

Drag and Pressure Induced Flows:

Here three viscometric flows involving both drag and pressure driven flows, i.e., the drag induced-
plane Couette flow and pressure-driven flows through capillary and rectangular dit dies are andyzed.
The veocity digributions, the flow rate versus the pressure drop behavior, the shear rate of the
suspenson a the interface with the gpparent dip layer and the wall dip velocity versus the shear stress
relationships were obtained. For the three fully developed smple shear flows consdered here, thereis
one velocity component Vz which changes only in one transverse to flow directionii.e,, V,(y) or V,(r)
in Cartesan and cylindricd coordinate systems for the plane Couette and rectangular dit flows, and
the capillary flows, repectively. In smple shear flow (with the transverse to flow direction y or r) the

behavior of the suspension is represented by a Hershd-Bulkley type viscoplastic condtitutive equation
(- dgnisused for negative shear Stress):
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for the absolute value of the shear stress, /4 y,%2= 1 i.e, theyield stress of the suspension, and the
shear rate (dV,/dy) = O for A yz/2< t 0. Here the shear rate sensitivity index, n, consistency index, m
and the yidd stress, T g, are the parameters of the Herschel-Bulkley equation of the suspension. The
Ostwald-de Wade or “power law” behavior represents the behavior of the shear viscosity of the

binder phase:

: 2

where n, and n, are the parameters of the Ostwald-de-Waele “power-law” eguation. The andyss

to follow, which uses a combination of the Hershel-Bulkley type viscoplagtic bulk fluid and the power-
law type binder to form the gpparent dip layer, dso provides as smplifications the cases of Bingham

type visooplastic bulk fluid (r=1), power-law type of bulk fluid ¢ g=0), and Newtonian bulk fluid
(t =0 and n=1) and the Newtonian binder fluid forming the apparent dip layer (w=1). They dl

amplify to the no-dip case upon setting the thickness of the apparent dip layer to zero, i.e., d=0.

The dip velocity is the difference between the velocity of the fluid found at the interface, between the
bulk suspenson and the gpparent dip layer, and the wal velocity. Thus, the dip velocity will be
positive or negative for the plane Couette flow and will be pogtive for the pressure driven capillary
and rectangular dit flows.

Plane Couette Flow (pure drag):



The isothermd plane Couette flow of an incompressible viscoplastic suspension under steedy State
and cregping flow conditions is considered first. The viscoplastic suspension is sandwiched in between
two gpparent dip layers consgting of the binder with thickness d (Figure 1). The pressure gradient,
(dP/dz) = 0. The fully developed ve ocity distribution within the apparent dip layer Zonel isgiven as

8
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where §) = 1/n, is the reciproca power-law index from Equation (2). The velocity digtribution of the

deforming viscoplastic fluid, i.e, Zonel ! for /4 y/%2= T becomes:

T(y-d) for dEY£(H- d) (4)
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a

where s=1/n and H is the distance of separation between the two infinitely wide and long plates. The
velocity digtribution in the apparent dip layer (Zone 1), found adjacent to the upper wall moving with

velodity V w, is

n

b
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The prevailing shear stress, tyz, is determined from:
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where d* isthe normdized dip layer thickness, d* = d/H.

The adoption of the Mooney’s generd methodology of differentiating the apparent shear rate with
respect to inverse of the gagp at congtant shear stress to plane Couette flow provides the wal dip
veocity, Ug from Equation (7):
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The dip velocity, U, values are thus obtained as a function of the shear stress, t yz from the slopes of
the apparent shear rate, Vw/H, versus reciprocal gap separation (/H) data. The yintercept of
2 (tyz"'to)('.js dv!

Vw/H versus UH for d <<H is g—: , which in turn is equal to dyz ,i.e, thetrue
o .
2

deformation rate of the suspension a the imposed shear stress, tyz.

Overdl, the relationship between the gpparent dip velocity, Ug and shear stress, tyz becomes:

US:iB(-tyZ)Sb:i o ®

Here £ is necessary to accommodate the gpparent dip occurring adjacent to the moving surface and
the stationary surface (Figure 1). The Navier's dlip coefficient, b, which relates the dip velocity, Ug to

shear dress, tyz, is thus defined on the basis of the dip layer thickness, d and parameters of the shear
viscosity of the binder, i.e, m, and s, =1/n,
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Equation 9 suggests that the wal dip behavior of an energetic  suspension can be predicted if the
goparent dip layer thickness, d, and the shear viscosity materia function of the binder are known a
priori.

This relaionship of the Navier's dip coefficient with the shear stress has been verified for Newtonian
binders by the dip velocity versus shear stress experiments [Ard and Kayon (1994); Soltani and

Yilmazer (1998)]. In those experiments the temperature was changed systematicdly to dter the
shear viscosity of the Newtonian binder, Ny, to demonstrate that the Navier's dlip coefficient indeed

d
obeys US:iEtW.

Applications: Cone-and-plate flow

For the no-dip condition the shear rate within the gap is congant as W/q,, where W is the rotationa
speed of the cone. For the small cone angles, g, used (generaly go< 2) the gap H(r) between the
cone and plate as a function of the radid distance, r, is o . The torque obtained a a given wall
veodity, V w =W, can be converted to the corresponding shear stress [Bird et d. (2002)]. For the

no-dip condition the shear dress is a congtant between the cone and plate. The corresponding

trestment for the apparent wal dip case by usng Equation (7) furnishes the following shear dress,

tyz, for aBingham type viscoplastic suspension (n=s=1) with a Newtonian binder (s,=np=1):

. mv "W
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where H=(gr and d :% :%. Thus, the shear stress, tyz, becomes a congtant in
Qof

between the cone and plate under the conditions of either a negligible dip layer thickness, d, over the
gap ratio, d*, or for d* vaueswhich do not change sgnificantly in the radia direction.

Seady torsional flow (parallel disks):

In steady torsond flow the dependence of the wal veocity, Vw, on radid digance r, i.e,

Vw =W, generates a shear rate which isafunction of the radia distance. The shear viscosity at the

edge i.e, r=R, h (QR) Jis

| e u
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where T is the torque. For the no-dip condition the shear rate at the edge, gr, isknown, i.e,

Or = W R/H. However, for the apparent dip case there is no a priori way of determining the shear

rate experienced by the sugpension undergoing fully developed shear flow. The problem with applying
a Mooney type analysis with this case is that the shear dress is non-linear with distance and is not
known apriori [Brunn et d. (1996)]. Equation 11 can only be used if the shear rate of the suspension
can be determined independently as a function of the torque applied. For example, the Straight line
marker technique together with cinematography (see Figure 4b) can provide the fully-developed

values of the dip velocity, Us, and the true shear rate of the suspension a the edge, gr , aspart of

the steady torsond flow experiment [Ard and Kayon (1994)]. With such a technique (or any other
which is able to measure the velocity distribution as part of the steedy torsond flow experiment) the
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dope be obtained from a series of torque, T versus Qg data to provide the shear

dress and the shear viscosity at the edge from Equation (11).



Capillary and Rectangular Sit Flows

In fully developed flows in capillary and rectangular dit dies the shear sressis linear with the distance
in the transverse to flow direction, r, in capillary flow and y in rectangular dit flow, regardiess of the
condtitutive equation of the fluid. The formation of a plug at shear sress vaues smdler than the yied

stress, 1 g, is unavoidable for capillary and rectangular dit flows of viscoplastic fluids,

Capillary flow
Under fully developed and isothermd flow conditions the velocity profile in the gpparent dip layer
becomes:

&gp 1 UPRD™

s

p 1

Oy,

vl = (12)

R
z = dz 2mb3 (Sb"'l)

D> lg) (N
(@ oy e e

®: D
Q

where %’ Is the pressure gradient for the fully developed flow and R is the radius of the capillary.

Thedipveodty Ue = V- ' is
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where t, = ﬁﬂ is the wall shear dtress. This provides the same functiona relationship between

the wall shear stress, Ty, and dip velodity Ug as observed earlier for the plane Couette flow
(Equetion 10):

U =bt % (14)
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Considering that the reciproca power-law index §, = 1/n, of the binder is positive —and assuming an
integer vaue - the use of Binomia Theorem provides:

.Sp+1 d

do d
gi' Ra @ R (sp+12) (16)

generating aNavier's dip coefficient b of:

. d . d sh
R= - and Ug = - (17)

Equation 17 was used by Jiang et d. (1986) and Yilmazer and Kalyon (1989) to determine the
thickness of the gpparent dip layer for agd and a concentrated suspension, respectively. Thus,
the parameters of the shear viscosty materid function of the binder phase plus the dip layer
thickness value are again shown to be sufficient to obtain an estimate of the wal dip behavior of

asuspenson.

Upon integration of the velocity distributions the volumetric flow rate, Q, becomes:
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The first term on the right of Equation (26) can be approximated as the volumetric flow rate due to dip,
Qs=Usp R gnce gengdly dl teemsinvolving d/R are much smdler than 1.
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and represents the deformation rate experienced by the suspension at the interface with the apparent dip

layer (for R>>d). It isthe true shear rate of the sugpension, which corresponds to the wall shear stress

t,.Z|R_G| »t,, . Equation 19 can aso be directly obtained from the integration of the velocity

digtribution using Leibniz rule of integration without assuming a condtitutive behavior for the bulk fluid
[Kayon (2003)]. Equation (19) becomes the conventionad Rabinowitsch correction [Rabinowitsch
4Q
pR®
versus reciproca tube diameter (1/D) and taking the derivative of gpparent shear rate with respect to

(1929)] for the no dip condition, Qs= 0. Rearranging Equation 19 as apparent shear rate, g, =



reciprocal diameter of the tube (1/D) at congtant wall shear dtress for d/R << 1 generates the same
result as provided by Mooney’s analysis for flow in acapillary [Mooney (1931)]:

(20)

The trangtion from plug flow to a deforming suspension can be used to define the yidd stress value of
the suspension in capillary flow [Gewgilili (2003)]. At the trandtion Q/Q =1 and T\, =1 ¢ for d/R <<
1. Thus, the determination of the yield stressis intimately connected to the characterization of the wall
dip of the viscoplagtic suspension.

Rectangular dlit flow:

The same gpparent dip mechanism involving a particle-free "apparent dip" zore is assumed a the wal of
the rectangular dit die which has a ggp of 2B and a width of W with W>>2B. The veocity distributions
for the three zones (I is the apparent dip layer, 11 is the deforming viscoplagtic suspension and 111 isthe
plug flow region) are:
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Smilar to the andydss followed for the capillary flow, the use of Binomid Theorem with

.Sp+1
49 @l d d t,,>P . Thus, one obtains the
Rg Sb

-—I(s, +1) provides R = ad U, =
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same Navie's dip coefficient, b, for the rectangular dit flow as determined for plane Couette flow
and capillary flow.

Obtaining the same Navier's dip coefficient, b, for both the drag flow based plane Couette flow and
the pressure-driven capillary and rectangular dit flows is important. It judtifies why wall dip data
collected usng steady torsond flow together with capillary rheometry should and do fdl within the
confines of a single wal dip velocity versus wall shear stress curve [Yilmazer and Kayon (1989b);
Kayon et a. (1993)].

The velocity digtribution for the deforming viscoplastic fluid in the rectangular dit isgiven as

A .S+l S+

B 1 € dg . © o U
vz”=Us+——S@§?W§i-—+-tov ~Fw g tod Grorwesy =(ha)

(5+1)twm g Bg g B % §

(23)

where t, = %% The velocity of the plug, V,' | for 0= y < yo (where y, is the location where

the absolute value of the shear Sressis equa to the yield stress) becomes:

B do 0
VoLt S 24
z S (s+2)t,, m gwgi By g @9

The volumetric flow rate Q (for d << B) is

2WB?  (ty - to)"™ [t (5+1)+to]

Q=0Q.+ i), me (5+2)

(25)




The derivative of the apparent shear rate, (3Q/(2WB?)) versus the reciprocal half-gap, 1/B, at constant
wall shear stress provides the wall dip velocity for rectangular dit flow:

(26)
The true deformation rate of the suspension at the wal of the rectangular dit (for d<<B)
can be determined from Equation (34) as.
o, = Q- Qs)g2+ din(Q- Qs) @

2WB? & dint,,

Equetion (27) can dso be directly obtained from the integration of the velocity digtribution usng Leibniz
rule of integration without assuming a condtitutive behavior to the bulk fluid, smilar to the capillary flow
andysis [Kayon (2003)].

Squeeze flow:

The andyses of the squeeze flow problem (where the suspension is sandwiched in between two discs one
of which is dationary and the second is moving with a velocity rormd to the plane of the disk) using
various types of congtitutive equations and wall boundary conditions are available (Scott 1931 and 1935;
Covey and Stanmore 1981; Adams et a. 1994; Zhang et d. 1995; Laun et al. 1999; Lawal and Kayon
1998 and 2000, Sherwood and Durban 1998; Meeten 2000). It is not possble to write andytica

expressions for the squeeze flow of viscopladtic fluids which would dso dlow the wall dip veocity to be
determined and more complicated andyses are necessary (Mannheimer 1983) and Tang and Kayon
(2004). Ahmed and Alexandrou (1994) modded numerically the squeeze flow and used it to determine
the parameters of the Hersche-Bulkley modd. Tang and Kayon (2004) have used a combination of

squeeze and capillary flows to provide the data necessary for the solution of the inverse problem to



characterize the three parameters of the Hershel-Bulkley equation and the two parameters of thewdl dip
velocity versuswal shear stress relationship.

Conclusions:

This paper outlines the basic mechanisms of wall dip and deformation occurring during the viscometric
flows of energetic suspensions, which are generdly fluids that exhibit a yield stress (viscoplagtic) and
goparent dip at the wall. The apparent dip layer is well defined and its thickness is a fraction of the
particle diameter. For energetic suspensions the flow curves need to be collected as a function of the
surface to volume rétio of the viscometer employed and the wall dip velocity vaues should be used to
correct the dhear rate a the wall. The corrections and the flow equations for various viscometers are
provided and discussed.
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