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Synopsis 
 
 
Energetic materials including gun propellants, solid rocket fuels, and pyrotechniques involve polymeric 

binders filled with energetic particles at concentrations that generally approach the maximum packing 

fraction of the solid phase. The high volume fraction of solids, which could be as high as over 80 percent 

by volume, gives rise to viscoplasticity coupled with wall slip. Thus, the characterization of the 

rheological behavior of the energetic formulations necessitates methods for the determination of the wall 

slip velocity values and the true wall shear rate and some way of determining the yield stress of the 

suspension. Here such methodologies for the characterization of the shear viscosity material function 

employing various basic viscometric flows, i.e., capillary, rectangular slit, steady torsional, cone-and-

plate and squeeze flows are outlined. The energetic suspension is assumed to be incompressible and 

flow under fully-developed conditions subject to apparent slip. The apparent slip layer is assumed to 

consist solely of the binder of the energetic formulation and its thickness is assumed to be independent 

of the flow rate. Both the drag induced (plane Couette) and pressure induced (capillary and slit) flows 

generate the same dependencies of the slip velocity on the shear stress for Newtonian and non-

Newtonian binders under isothermal and creeping flow conditions.   Navier´s slip coefficient, which 

relates the wall slip velocity to the shear stress, is determined to be similar for all three flows and is a 

function of the apparent slip layer thickness and the shear viscosity of the binder.  The assumed 

apparent slip mechanism provides slip velocity values that are consistent with the traditional Mooney 

method and furthermore allows the determination of the true shear rate of the energetic suspension at the 

wall. The yield stress value of the energetic suspension is determined as a byproduct of the wall slip 

analysis. The characterization of the rheological behavior of the energetic suspension generally requires 

multiple methods overlapping in their shear rate ranges to be applied. The understanding of the 

rheological behavior of the energetic material is a must for its processing under safe conditions.  



 

 

 

Introduction 

 
Energetic suspensions including solid rocket fuels, gun propellants and pyrotechniques are 

concentrated suspensions of particulate solids in polymeric binders. The rheological characterization of 

such concentrated suspensions is complicated by their viscoplasticity [Bingham (1922)], their 

ubiquitous slip at the walls of the rheometers [Reiner (1960)] and various types of migration [Leighton 

and Acrivos (1987)] and structure development effects [Metzner (1985)]. Capillary, slit and steady 

torsional flows are most frequently employed for the characterization of the wall slip behavior of 

suspensions [Yilmazer and Kalyon (1989); Barnes (1995)]. Among these three flows, historically the 

capillary flow has been the most commonly applied since the theoretical basis for the wall slip analysis 

in capillary flow has been established since 1931 [Mooney (1931)].  The methodology of “Mooney 

method”, involves changing the surface to volume ratio of the capillary die, i.e., by using capillary dies 

with differing diameters at constant length over diameter ratio. The wall slip versus the wall shear 

stress behavior of a number of concentrated suspensions has been characterized using the Mooney 

analysis method [Yilmazer and Kalyon (1989 and 1991); Kalyon et al. (1993); Aral and Kalyon 

(1994); Michienzi et al. (1997); Suwardie et al. (1998); Kalyon et al. (1999); Prickett et al. (2003)].   

 

The adoption of the Mooney method to steady torsional flow has been carried out by Yoshimura and 

Prud’homme by changing the surface to volume ratio of the rheometer, i.e., the gap between the disks 

[Yoshimura and Prud’homme (1988)]. Kalyon et al. (1993) have investigated the applicability of this 

correction method to steady torsional flow by comparing the wall slip velocity values inferred from the 

gap dependence of the apparent viscosity, obtained upon the use of Mooney analysis, with the wall 



 

 

slip velocity versus wall shear stress data obtained independently by using a straight-line marker 

technique in steady torsional flow.  

 

A combination of drag-induced (steady torsional flow) and pressure-induced (capillary) flows was 

used to characterize the wall slip velocity values over a broad range of shear stresses [Yilmazer and 

Kalyon (1989) and Kalyon et al. (1993)]. These studies have shown that the wall slip behavior 

remains the same for both flows, suggesting that the mechanisms of wall slip are likely to be the same 

for both the drag induced and pressure induced rheometers. Various methodologies were also 

developed to characterize the “true” (slip corrected) shear viscosity of the suspension upon the 

determination of the wall slip velocity versus wall shear stress behavior [Yilmazer and Kalyon (1991); 

Aral and Kalyon (1994); Kalyon et. al. (1993); Kalyon (2003)]. The determination of the wall slip 

velocities by systematically changing the surface to volume ratio of the rectangular slit die rheometer 

has also been carried out [Kalyon et al. (1997)] in conjunction with an in-line slit die with a 

continuously adjustable gap [Kalyon and Gokturk (1994)]. The applicability of the inverse problem 

solution techniques to parameter estimation of viscoplastic fluids, subject to wall slip, was also 

investigated [Yeow et al. (2003); Tang and Kalyon (2004)] 

 

The migrations of particle and binder during viscometric flows of concentrated suspensions are 

affected by wall slip. Acrivos and co-workers have determined the wall slip velocity values of a 

concentrated suspension from shear-induced particle migration effects occurring in Couette flow [Jana 

et al. (1995)]. Allende and Kalyon (2000) have demonstrated the effect of wall slip on the migration 

of particles in the transverse to flow direction in Poiseuille flow. The wall slip of the suspension also 

affects the filtration-based migration of the binder. 



 

 

 

The migration of the particles represents a quality issue, since it can be assumed that the particles with 

the smaller diameters, i.e., the greater surface to volume ratio, would give rise to significant differences 

in burn rates. Thus, the effect of significant migration of particles in the transverse to flow direction 

would be to alter the burn rate distributions across the grain. On the other hand, the migration of the 

binder in the axial flow direction (in the direction of the pressure gradient) represents a serious safety 

issue. 

 

As shown by Yilmazer et al. (1989a) and Yaras et al. (1994) the migration of the binder depletes the 

concentration of the binder in the processor. In extreme cases it is shown that the suspension becomes 

unprocessable. The migration of the binder phase is believed to be the cause of some of the incidents. 

For example, in one case involving a single screw extrusion process the binder wax was observed to 

exude out of the die of the extruder first followed by an explosion. As shown by Yilmazer et al. 

(1989a), this incident fits the grinding mechanism that ensues in the extruder when the suspension in 

the mixing volume loses some of its binder, becomes solid-like and the continuation of the rotation of 

the screws leads to the grinding of the particles of the suspension.  

 

Since the concentration of solids approaches the maximum packing fraction in most energetic 

suspensions, the rheological behavior and the processability of energetic suspensions are very sensitive 

to the amount and distribution of air entrained during processing [Kalyon et al. 1991 a]. Air 

entrainment is related to the geometry and operating conditions employed during processing, 

especially on the degree of fill distribution in the continuous processor [Kalyon et al. 1991 b]. Thus, 



 

 

the shear viscosity and wall slip behavior of a given suspension can be altered  on the basis of tailoring  

its air content in the confines of the processor [Kalyon et al. (1991)].  

 

Thus, the experimental methods of obtaining the wall slip behavior of energetic suspensions as a function 

of the wall shear stress are available. However, currently there is no a priori method of estimating and 

predicting their wall slip behavior. Furthermore, the mechanisms involved in the development of the slip 

velocity behavior are not clear. Finally, there is no clear-cut methodology for the determination of the 

yield stress value of an energetic suspension. Here the development of the apparent slip mechanism 

upon the formation of a thin slip layer at the wall, consisting solely of the binder, is used as the basis for 

solving the velocity distributions of viscoplastic fluids in plane Couette, capillary and rectangular slit 

flows and the determination of the corresponding wall shear rate. These distributions allow the 

determination of the relationships between the wall slip velocity and the shear stress on one hand and the 

development of the flow curves for these rheometers on the other hand. The consistency of this 

mechanism with the traditional Mooney method, for the determination of the slip velocities, is also 

investigated. Finally, correlations of the wall slip behavior with various properties of the concentrated 

suspensions are sought.   

 

Apparent slip mechanism  

During the flow of a suspension of rigid particles the particles cannot physically occupy the space 

adjacent to a wall as efficiently as they can away from the wall. This leads to the formation of generally 

relatively thin but always present layer of fluid adjacent to the wall, i.e., the “apparent slip layer” or the 

“Vand layer”. Green detected this layer as early as 1920 in the flow of paint suspensions under a 

microscope [Green (1920]. According to Bingham: “slip comes from a lack of adhesion between the 



 

 

material and the shearing surface. The result is that there is a layer of liquid between the shearing 

surface and the main body of the suspension and flow takes place in this layer according to the laws of 

viscous rather than plastic flow” [Bingham (1922)]. If the dispersion medium consists of a structured 

fluid, its shear viscosity will vary with structuring parameters. For example, it has been shown that in 

the case of oleic acid forming the apparent slip layer the orientation of the oleic acid molecules, 

parallel to the wall, reduces “friction”, i.e., oleic acid acts as a lubricant [Reiner (1960)]. On the other 

hand, when the molecules of oleic acid are oriented normal to the wall “friction increases”, i.e., oleic 

acid at the wall acts as a ”roughening layer” [Reiner (1960)]. 

 

The development of this apparent wall slip layer has important ramifications in processing and 

manufacturing, process control, rheological characterization and properties of energetic suspensions.  

The formation of a slip layer during processing in dies, extruders and in various molding, and shaping 

machinery, changes the processability characteristics of the energetic suspension.  For example, in 

single and twin screw extrusion wall slip reduces the pressurization rate of the extruder and its 

distributive and dispersive mixing capabilities [Kalyon (1993, 1995)].  In die flows wall slip reduces 

the pressure drop, the viscous energy dissipation and particle migration effects [Allende and Kalyon 

(2000)]. 

 

The formation of the slip layer thickness does complicate efforts to characterize in-line the physical 

and chemical characteristics of energetic suspensions during manufacture.  For example, various 

sensors that are based on infrared signals need to penetrate beyond the thickness of the slip layer to 

generate data, which are representative of the bulk of the suspension [Kalyon (1993, 1995)].  

Furthermore, the slip layer becomes a "skin" upon solidification of the suspension upon processing, 

and alters the burn-rate, surface smoothness and mechanical properties of the extrudates of the 

energetic suspension.  Thus, the development of the slip layer during deformation and flow of 

energetic suspensions is an important structuring effect with important ramifications for  energetics 

manufacture. 



 

 

 

Here it is assumed that the apparent slip layer thickness, δ, of an energetic suspension is free of 

particles and consists solely of the binder of the energetic suspension. This mechanism is depicted in 

an exaggerated manner in Figures 1 and 2, which show the apparent slip layers formed next to the 

walls in plane Couette flow and capillary/rectangular slit flows, respectively. For concentrated 

suspensions the shear viscosity of the binder of the suspension will be significantly smaller than the 

shear viscosity of the bulk of the suspension away from the wall, giving rise to a step change  in the 

slope of the velocity distribution. Since the thickness of the slip layer, δ, is significantly smaller than the 

channel gap, the formation of the slip layer gives the appearance of wall slip; hence the “apparent slip” 

at the wall.  

 

Let us probe the validity of this mechanism by directly analyzing the extrudates of an inert  

concentrated suspension, i.e.,  “a processing simulant”. The suspension used for this demonstration 

has 76.3% by weight of KCl particles (61.9% by volume) incorporated into a binder consisting of a 

terpolymer based elastomer (Grade 4404 available from Zeon Chemicals, emulsion polymerized 

terpolymer of ethyl acrylate, butyl acrylate and hydroxyl cure site monomer) plasticized with a dioctyl 

adipate, DOA, plasticizer available from Eastman Chemical Company. The extrudates of this 

suspension could hold their shapes upon exit from a capillary die. The size distribution of the low 

aspect ratio KCl particles is bimodal with 31% of the KCl consisting of particles with a mean 

equivalent diameter of 72 microns and 69% of the KCl particles exhibiting a mean equivalent diameter 

of 176 microns. 

 

The maximum packing fraction of the KCl particles is estimated as 0.68 following the method of 

Ouchiyama and Tanaka [Ouchiyama and Tanaka (1984) and Fiske et al. (1994)]. The harmonic 

mean diameter of the KCl particles is 121 microns. The suspension was extruded at 71 °C, from a 

capillary rheometer using various dies with differing diameters. The extrudates were collected, 

cryogenically fractured to expose their cross-sectional areas and their cross-sections were analyzed 



 

 

for the distributions of the binder and the particles using scanning electron microscopy and energy 

dispersive x-ray analysis.  

 

Figure 3 shows a typical scanning electron micrograph (magnification ratio of 75X) of an extrudate 

section adjacent to the free surface of the extrudate. The diameter of the extrudate is 9 mm and thus 

only a small portion of the extrudate is captured in the micrograph.  The thickness distribution of the 

particle-free binder layer found at the wall was determined at higher magnifications over the same 

section. Some of the identified particles of KCl are shown hatched, while the apparent slip layer is 

indicated as the black zone located adjacent to the free surface of the extrudate. The determination of 

the thickness distribution of the particle-free apparent slip layer revealed a mean value of 10.8 

microns, a standard deviation of 6.3 microns and a range of 2 to 30 microns.  Thus, the ratio of the 

mean thickness of the slip layer over the harmonic mean particle diameter of the rigid particles of the 

suspension is about 0.09. 

 

This ratio is in the same approximate range of the earlier estimates of the ratios of the thickness of the 

apparent slip layer over the mean particle diameter determined for concentrated suspensions with 

Newtonian binders and non-colloidal particles. For example this ratio was determined as 0.06 by 

Yilmazer and Kalyon (1989) for a suspension filled with 60% by volume of ammonium sulfate 

particles and was determined to be 0.063 by Jana et al. (1995) for suspensions filled with poly(methyl 

methacrylate) particles in the range of 46 to 52% by volume. The ratios of the slip layer thickness over 

the particle diameter were  determined to be 0.037 and 0.071 for glass beads and Al particles 

suspended in a Newtonian hydroxyl terminated polybutadiene binder, respectively [Soltani and 

Yilmazer (1998)].  

 

Given this apparent slip mechanism what factors affect the development of the wall slip condition for 

an energetic suspension under steady state conditions? Is the apparent slip layer formation mechanism 

of the energetic material compatible with Mooney’s method for the determination of the wall slip 



 

 

velocities? The assumptions for the analysis to follow are derived from those used by Reiner who 

assumed that the apparent slip layer of a suspension behaved as  a Newtonian fluid [Reiner (1960)]: 

 

a) The apparent slip layer consists solely of the binder of the suspension and itself adheres to 

the wall. 

b) The thickness of the apparent slip layer is sufficiently small so that the separation of the 

binder from the bulk suspension to form the slip layers does not affect the shear viscosity 

of the suspension.  

c) The thickness of the apparent slip layer is not affected by the radius of the flow channel 

nor the volumetric flow rate.  

d) The binder fluid forming the apparent slip layer and the bulk suspension are 

incompressible and can be represented as generalized Newtonian fluids:  

 

 

Velocity Distributions of Viscoplastic Suspensions with the Apparent Slip Mechanism for 

Drag and Pressure Induced Flows:  

 

Here three viscometric flows involving both drag and pressure driven flows, i.e., the drag induced-

plane Couette flow and pressure-driven flows through capillary and rectangular slit dies are analyzed. 

The velocity distributions, the flow rate versus the pressure drop behavior, the shear rate of the 

suspension at the interface with the apparent slip layer and the wall slip velocity versus the shear stress 

relationships were obtained. For the three fully developed simple shear flows considered here, there is 

one velocity component Vz which changes only in one transverse to flow direction i.e., Vz(y) or Vz(r) 

in Cartesian and cylindrical coordinate systems for the plane Couette and rectangular slit flows, and 

the capillary flows, respectively.  In simple shear flow (with the transverse to flow direction y or r) the 

behavior of the suspension is represented by a Hershel-Bulkley type viscoplastic constitutive equation 

(- sign is used for negative shear stress):  
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for the absolute value of the shear stress, τyz ≥ τ0, i.e.,  the yield stress of the suspension, and the 

shear rate (dVz/dy) = 0 for τyz < τ0. Here the shear rate sensitivity index, n, consistency index, m 

and the yield stress, τ0, are the parameters of the Herschel-Bulkley equation of the suspension. The 

Ostwald-de Waele or “power law” behavior represents the behavior of the shear viscosity of the 

binder phase:  
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where mb and nb are the parameters of the Ostwald-de-Waele “power-law” equation. The  analysis 

to follow, which uses a combination of the Hershel-Bulkley type viscoplastic bulk fluid and the power-

law type binder to form the apparent slip layer, also provides as simplifications the cases of Bingham 

type viscoplastic bulk fluid (n=1), power-law type of bulk fluid (τ0=0), and Newtonian bulk fluid 

(τ0=0 and n=1) and the Newtonian binder fluid forming the apparent slip layer (nb=1). They all 

simplify to the no-slip case upon setting the thickness of the apparent slip layer to zero, i.e., δ=0.  

 

The slip velocity is the difference between the velocity of the fluid found at the interface, between the 

bulk suspension and the apparent slip layer, and the wall velocity. Thus, the slip velocity will be 

positive or negative for the plane Couette flow and will be positive for the pressure driven capillary 

and rectangular slit flows.  

 

Plane Couette Flow (pure drag): 



 

 

 
 
The isothermal plane Couette flow of an incompressible viscoplastic suspension under steady state 

and creeping flow conditions is considered first. The viscoplastic suspension is sandwiched in between 

two apparent slip layers consisting of the binder with thickness δ (Figure 1). The pressure gradient, 

(dP/dz) = 0. The fully developed velocity distribution within the apparent slip layer Zone Ι is given as: 
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where sb = 1/nb is the reciprocal power-law index from Equation (2).  The velocity distribution of the 

deforming viscoplastic fluid, i.e., Zone ΙΙ for τyz ≥ τ0  becomes: 
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where s=1/n and H is the distance of separation between the two infinitely wide and long plates.  The 

velocity distribution in the apparent slip layer (Zone ΙΙΙ), found adjacent to the upper wall moving with 

velocity V w,  is: 
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The prevailing shear stress, τyz, is determined from: 
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where δ* is the normalized slip layer thickness, δ* = δ/H. 
 
The adoption of the Mooney’s general methodology of differentiating the apparent shear rate with 
respect to inverse of the gap at constant shear stress to plane Couette flow provides the wall slip 
velocity, Us from Equation (7): 
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The slip velocity, Us, values are thus obtained as a function of the shear stress, τyz from the slopes of 

the apparent shear rate, V w / H,  versus reciprocal gap separation (1/H) data. The y-intercept of 

V w / H versus 1/H for δ  << H  is 
s

m
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deformation rate of the suspension at the imposed shear stress, τyz.  

 
 

Overall, the relationship between the apparent slip velocity, Us and shear stress, τyz becomes: 
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Here ± is necessary to accommodate the apparent slip occurring adjacent to the moving surface and 
the stationary surface (Figure 1). The Navier´s slip coefficient, β , which relates the slip velocity, Us  to 

shear stress, τyz, is thus defined on the basis of the slip layer thickness, δ and parameters of the shear 
viscosity of the binder, i.e., mb  and sb = 1/nb.  
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Equation 9 suggests that the wall slip behavior of an energetic  suspension can be predicted if the 
apparent slip layer thickness, δ, and the shear viscosity material function of the binder are known a 
priori.  
 
This relationship of the Navier’s slip coefficient with  the shear stress has been verified for Newtonian 
binders by the slip velocity versus shear stress experiments [Aral and Kalyon (1994); Soltani and 
Yilmazer (1998)].  In  those experiments  the temperature was changed systematically to alter the 
shear viscosity of the Newtonian binder,  bµ , to demonstrate that the Navier’s slip coefficient indeed 

obeys w
b

s t
d

U  
µ

= ± . 

 
Applications: Cone-and-plate flow 

 

For the no-slip condition the shear rate within the gap is constant as Ω/θo, where Ω is the rotational 

speed of the cone. For the small cone angles, θo,  used (generally θo< 2) the gap H(r) between the 

cone and plate as a function of the radial distance, r,  is θo r. The torque obtained at a given wall 

velocity, rV w Ω= , can be converted to the corresponding shear stress [Bird et al. (2002)].  For the 

no-slip condition the shear stress is a constant between the cone and plate. The corresponding 

treatment for the apparent wall slip case by using Equation (7) furnishes the following  shear stress, 

yzt , for a Bingham type  viscoplastic suspension (n=s=1) with a Newtonian binder  (sb=nb=1):  
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where   rH 0θ=   and  ( )rH 0θ
δ

=
δ

=δ∗ . Thus, the shear stress, yzt , becomes a constant in 

between the cone and plate under the conditions of either a negligible slip layer thickness, δ, over the 
gap ratio, δ*, or for δ* values which do not change significantly in the radial direction.  
 
Steady torsional flow (parallel disks):  

 

In steady torsional flow the dependence of the wall velocity, wV , on radial distance r,  i.e., 

rVw Ω= , generates a shear rate which is a function of the radial distance.  The shear viscosity at the 

edge, i.e., r=R, )( R

•
γη , is:  
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where T  is the torque. For the no-slip condition the shear rate at the edge, 
•

γR ,  is known, i.e., 
•

γR = Ω R/H. However, for the apparent slip case there is no a priori way of determining the shear 

rate experienced by the suspension undergoing fully developed shear flow. The problem with applying 
a Mooney type analysis with this case is that the shear stress is non-linear with distance and is not 
known a priori [Brunn et al. (1996)]. Equation 11 can only be used if the shear rate of the suspension 
can be determined independently as a function of the torque applied.  For example, the straight line 
marker technique together with cinematography (see Figure 4b) can provide the fully-developed 

values of the slip velocity, Us, and the true shear rate of the suspension at the edge, 
•

γR ,  as part of 

the steady torsional flow experiment [Aral and Kalyon (1994)].  With such a technique (or any other 
which is able to measure the velocity distribution as part of the steady torsional flow experiment) the 



 

 

slope •
γR lnd

lnd T
can be obtained from a series of torque, T versus 

•
γR data to provide the shear 

stress and the shear viscosity at the edge from Equation (11).  
 
 



 

 

Capillary and Rectangular Slit Flows 

 
In fully developed flows in capillary and rectangular slit dies the shear stress is linear with the distance 
in the transverse to flow direction, r, in capillary flow and y in rectangular slit flow, regardless of the 
constitutive equation of the fluid. The formation of a plug at shear stress values smaller than the yield 

stress, τ0, is unavoidable for capillary and rectangular slit flows of viscoplastic fluids. 

 
Capillary flow  
Under fully developed and isothermal flow conditions the velocity profile in the apparent slip layer 
becomes: 
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where 
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 is the pressure gradient for the fully developed flow and R is the radius of the capillary.  
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where 
2
R

dz  
dP

w
−

=τ  is the wall shear stress. This provides the same functional relationship between 

the wall shear stress, τw, and slip velocity Us  as observed earlier for the plane Couette  flow 

(Equation 10): 
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Considering that the reciprocal power-law index sb = 1/nb  of the binder is positive –and assuming an 

integer value - the use of Binomial Theorem provides: 
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generating a Navier's slip coefficient β  of: 
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Equation 17 was used by Jiang et al. (1986) and Yilmazer and Kalyon (1989) to determine the 

thickness of the apparent slip layer for a gel and a concentrated suspension, respectively. Thus, 

the parameters of the shear viscosity material function of the binder phase plus the slip layer 

thickness value are again shown to be sufficient to obtain an estimate of the wall slip behavior of 

a suspension.   

 
 
Upon integration of the velocity distributions the volumetric flow rate, Q, becomes:  
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The first term on the right of Equation (26) can be approximated as the volumetric flow rate due to slip, 
Qs= Us π  R2 since generally all terms involving δ/R are much smaller than 1.  
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and represents the deformation rate experienced by the suspension at the interface with the apparent slip 
layer (for R>>δ).  It is the true shear rate of the suspension, which corresponds to the wall shear stress 

wRrz τ≈τ δ− . Equation 19 can also be directly obtained from the integration of the velocity 

distribution using Leibniz rule of integration without assuming a constitutive behavior for the bulk fluid 
[Kalyon (2003)]. Equation (19) becomes the conventional Rabinowitsch correction [Rabinowitsch 

(1929)] for the no slip condition, Qs= 0.  Rearranging Equation 19 as apparent shear rate, 3a
R

Q4

π
=γ

•
 

versus reciprocal tube diameter (1/D) and taking the derivative of apparent shear rate with respect to 



 

 

reciprocal diameter of the tube (1/D) at constant wall shear stress for δ/R << 1  generates the same 
result as provided by Mooney´s analysis for flow in a capillary [Mooney (1931)]: 
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The transition from plug flow to a deforming suspension can be used to define the yield stress value of 

the suspension in capillary flow [Gevgilili (2003)].  At the transition Qs/Q = 1 and τw = τ0 for δ/R << 

1.  Thus, the determination of the yield stress is intimately connected to the characterization of the wall 
slip of the viscoplastic suspension. 
 
Rectangular slit flow:  
 
The same apparent slip mechanism involving a particle-free "apparent slip" zone is assumed at the wall of 
the rectangular slit die which has a gap of 2B and a width of W with W>>2B.  The velocity distributions 
for the three zones (Ι is the apparent slip layer, ΙΙ is the deforming viscoplastic suspension and ΙΙΙ is the 
plug flow region) are:  
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Similar to the analysis followed for the capillary flow, the use of Binomial Theorem with 
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same Navier´s slip coefficient, β , for the rectangular slit flow as determined for plane Couette flow 
and capillary flow.   
 
Obtaining the same Navier´s slip coefficient, β , for both the drag flow based plane Couette flow and 

the pressure-driven capillary and rectangular slit flows is important. It justifies why wall slip data 

collected using steady torsional flow together with capillary rheometry should and do fall within the 

confines of a single wall slip velocity versus wall shear stress curve [Yilmazer and Kalyon (1989b); 

Kalyon et al. (1993)].   

 
The velocity distribution for the deforming viscoplastic fluid in the rectangular slit is given as:   
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where 
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w ∂
∂−

=τ . The velocity of the plug, Vz
ΙΙΙ

 , for 0≤ y ≤ y0 (where y0 is the location where 

the absolute value of the shear stress is equal to the yield stress) becomes:  
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The volumetric flow rate Q (for δ << B) is:  
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The derivative of the apparent shear rate, (3Q/(2WB2)) versus the reciprocal half-gap, 1/B, at constant 
wall shear stress provides the wall slip velocity for rectangular slit flow:  
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The true deformation rate of the suspension at the wall of the rectangular slit (for δ<<B)  
can be determined from Equation (34) as:  
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Equation (27) can also be directly obtained from the integration of the velocity distribution using Leibniz 

rule of integration without assuming a constitutive behavior to the bulk fluid, similar to the capillary flow 

analysis [Kalyon (2003)].  

 
Squeeze flow:  

The analyses of the squeeze flow problem (where the suspension is sandwiched in between two discs one 

of which is stationary and the second is moving with a velocity normal to the plane of the disk) using 

various types of constitutive equations and wall boundary conditions are available (Scott 1931 and 1935; 

Covey and Stanmore 1981; Adams et al. 1994; Zhang et al. 1995; Laun et al. 1999; Lawal and Kalyon 

1998 and 2000, Sherwood and Durban 1998; Meeten 2000). It is not possible to write analytical 

expressions for the squeeze flow of viscoplastic fluids which would also allow the wall slip velocity to be 

determined and more complicated analyses are necessary (Mannheimer 1983) and Tang and Kalyon 

(2004). Ahmed and Alexandrou (1994) modeled numerically the squeeze flow and used it to determine 

the parameters of the Herschel-Bulkley model. Tang and Kalyon (2004) have used a combination of 

squeeze and capillary flows to provide the data necessary for the solution of the inverse problem to 



 

 

characterize the three parameters of the Hershel-Bulkley equation and the two parameters of the wall slip 

velocity versus wall shear stress relationship.  

 
Conclusions:  
 
This paper outlines the basic mechanisms of wall slip and deformation occurring during the viscometric 

flows of energetic suspensions, which are generally fluids that exhibit a yield stress (viscoplastic) and 

apparent slip at the wall. The apparent slip layer is well defined and its thickness is a fraction of the 

particle diameter. For energetic suspensions the flow curves need to be collected as a function of the 

surface to volume ratio of the viscometer employed and the wall slip velocity values should be used to 

correct the shear rate at the wall. The corrections and the flow equations for various viscometers are 

provided and discussed.  
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