
A comparison of one-dimensional traveling waves in inverse and normal fluidized beds

Maureen A. Howley
Otto H. York Department of Chemical Engineering
New Jersey Institute of Technology, Newark, NJ 07102

Benjamin J. Glasser
Department of Chemical and Biochemical Engineering
Rutgers University, Piscataway NJ 08854

Abstract

The state of uniform fluidization is usually unstable to small disturbances, and this
can lead to the formation of vertically traveling voidage waves. In inverse fluidization,
when particle density is less than fluid density (ρs < ρf ), particles fluidize in the direc-
tion of gravity when the drag force exerted by the fluid overcomes buoyancy. Inverse
fluidization thus provides a unique parameter space, which augments the study of in-
stability behavior in normal fluidization when ρf < ρs. Using continuum equations
of continuity and motion, we compared the linear stability of normal and inverse bed
modes to examine the effect of the Froude number (Fr) and fluid to solid density ratio
(δ = ρf/ρs). Making use of numerical bifurcation analysis and continuation, periodic so-
lutions in the form of one-dimensional traveling waves (1D-TWs) were computed. Based
on wave growth rates and bifurcation structure, we identified the Fr as an important
parameter for predicting instability strength. However, δ affects instability onset, or the
point at which the base state is rendered unstable. In the case studies we examined,
traveling waves were shown to propagate in the direction of fluidization, and asymmet-
rical, high amplitude 1D-TW profiles suggest fully developed bubble-like structures are
oriented in the direction of fluidization.

1 Introduction

In inverse fluidization, low density particles become mobile, or fluidize, when the drag exerted
by a heavier fluid flowing downwards through the column overcomes the buoyancy force on the
particles (Gőz, Glasser, Kevrekidis & Sundaresan [1]). Inverse fluidization is the reverse of what
is considered to be normal fluidization, where heavier particles are fluidized by the upwards flow
of a lighter gas or liquid. Fluidizing lightweight particles by a heaver medium is advantageous
in many important industrial applications where enhanced multi-phase mixing can improve heat
and mass transfer performance (see Muroyama & Fan [2]). For example, in biotechnology and
catalytic chemical reaction engineering, inverse turbulent three-phase reaction systems have been
investigated for improved selectivity and yield. In these systems, lightweight particles are fluidized
by the countercurrent flow of liquid downwards and gas bubbles upwards (Fan, Muroyama & Chern
[3]; Krishnaiah, Guru & Sekar [4]; Comte, Bastoul, Hebrard, Roustan & Lazarova [5]). In fluidized-
bed dry particle coating, a high-density super critical fluidization medium (operating in inverse
mode) may improve coating efficiency by affecting the frequency and impact value of particle-
particle collisions. However, it is difficult to support the use of this mode as a viable alternative
without a a better understanding of how fluidization direction (relative to gravity) affects instability
behavior in the bed.



In normal fluidized beds, it has been well-documented that the base-state of uniform flu-
idization is usually unstable to small disturbances, and this can lead to the formation and propaga-
tion of vertically traveling voidage waves. When primary instabilities becomes spatially amplified
in the bed, this can bring about complex bubbling and turbulent flow regimes, which completely
alter the flow characteristics of the system (Gibilaro [6]). In gas-fluidized beds, voidage waves are
in the form of bubbles, where experimental evidence has shown that just beyond conditions of min-
imum fluidization, the solids tend to remain compacted as increasing volumes of gas pass through
the condensed phase “much in the manner of a gas passing through an actual liquid” (Wilhelm &
Kwauk [7]). This mode of fluidization is often referred to as aggregative, and differs dramatically
from flow behavior that is sometimes observed in liquid-fluidized beds, which expand uniformally
and are generally more stable in operation (referred to as non-bubbling or particluate).

In the fluidization research, two-phase continuum models have been used to study the sta-
bility behavior of gas- and liquid-fluidized beds. This approach uses ensemble- or volume-averaged
equations of continuity and motion to describe the behavior of the fluid and particle phases using
constitutive relationships or closure laws to express the various force terms as functions of locally
averaged variables. Researchers have generally adopted closures based on empirical correlations
(Pigford & Baron [8]; Murray [9]; Anderson & Jackson [10]; Garg & Pritchett [11]), but constitu-
tive terms have also been theoretically derived using physical arguments (Batchelor [12]), and from
first principles (Koch & Sangani [13]). Anderson, Sundaresan & Jackson [14] successfully demon-
strated that these equations do capture the physics necessary to distinguish between bubbling and
non-bubbling systems. Recently, Duru, Nicolas, Hinch & Guazzelli [15] tested this approach experi-
mentally by relating the physical properties of saturated voidage waves to the particle phase pressure
and viscosity terms. Their results confirmed that the model was satisfactory for describing the be-
havior of one-dimensional voidage waves within the experimental parameter range investigated (see
also Duru & Guazzelli [16]).

In the experimental work of Wilhelm & Kwauk [7], solid-air (or aggregative) systems were
found to be separable from solid-water (or particulate) systems on the basis of the dimensionless
Froude number evaluated at minimum fluidization velocity, for a wide range of particle species. Ex-
perimental evidence of such distinct flow behavior has prompted its investigation by linear stability
analysis of the uniform fluidization state. In a stability analysis of gas- and liquid-fluidized beds,
Gőz [17, 18] analyzed primary bifurcations of two-dimensional vertically and oblique traveling waves
from the base-state, and found only minor differences between gas- and liquid-fluidized beds. Gőz
[19] also found similar bifurcation structure exhibited in gas- and liquid-fluidized beds having small
Fr approximations. Gőz & Sundaresan [20] extended a previous analysis performed by Gőz [21], to
examine the stability of one-dimensional periodic waves to two-dimensional perturbations of large
transverse wavelength in liquid-fluidized beds by considering the effects of fluid phase inertia and
viscosity. These authors demonstrated that the instability mechanism is the same for both gas- and
liquid-fluidized beds, and concluded that scaling differences play an important role in distinquishing
the difference in gas- and liquid-fluidized bed behavior, viz. the Fr number group.

Linear stability analyses of the base state have since led to the computation of fully-
developed, one and two-dimensional traveling wave solutions using numerical simulation techniques
and bifurcation theory (Glasser, Kevrekidis & Sundaresan [22]). These authors found that for
both gas- and liquid-fluidized beds, two-dimensional traveling waves were subsequently born out of
one dimensional traveling wave solutions emerging through Hopf bifurcations of the steady state
solution. Glasser, Kevrekidis & Sundaresan [23] proposed that a distinction between bubbling and
non-bubbling flow behavior can be made based upon an examination of the particle-phase velocity



field in high-amplitude two-dimensional traveling wave solutions. By examining a wide range of
parameter values, these authors demonstrated that the potential for bubbling is dictated by the
dimensionless quantity Ω where Ω2 is shown to be equivalent to Fr by adopting a natural scale for
the particle phase viscosity.

In this paper, a comparative linear stability analysis of the uniform fluidization state is
carried out in inverse and normal systems to determine if the role of the Fr in distinguishing
bubbling from non-bubbling bed behavior is consistent with the ideas put forth previously by other
researchers. The inverse liquid bed proves to be an important case study because it introduces an
additional dimensionless parameter set having values, which do not exist within the set defined by
normal fluidization. Moreover, the role of fluidization direction (with respect to gravity) can be
critically examined. We compared instability behavior in normal and inverse liquid beds for systems
having comparable Fr numbers and for systems having Fr numbers, which differed by a factor of
4. Linear stability is analyzed at the marginal stability point, or point at which both systems are
rendered unstable at an expanded bed volume defined by some critical solids volume fraction φc.
High amplitude one-dimensional traveling wave solutions are used to compare the structure and
propagation behavior of wave forms in the two beds.

Volume averaged equations of continuity and motion from the theory of Anderson & Jackson
[10] are presented and discussed in Section 2. In Section 3, the linear stability of the uniformly
fluidized base state is examined in normal and inverse bed modes, and one-dimensional traveling
wave solutions are computed in Section 4 using a derivation from the work of Needham & Merkin
[24]. Results are presented in Section 5 for water-fluidized systems using the two-fluid model to
examine the effect of the dimensionless Fr number and δ. Conclusions are discussed in Section 6.

2 Equations of motion

We begin with a description of the volume-averaged equations of continuity and motion for a two-
phase system consisting of a fluid and solid phase [10]. These equations have been written in a
moving frame of reference at constant velocity ω (Gőz [25]), and take the form:

∂ε

∂t
+∇ · [ε (u− ωk)] = 0 (1)

∂φ

∂t
+∇ · [φ (v − ωk)] = 0 (2)

ρfε

[
∂u

∂t
+ (u− ωk) · ∇u

]
= −ε∇ · σf − F̃ + ερf g (3)

ρsφ

[
∂v

∂t
+ (v − ωk) · ∇v

]
= −φ∇ · σf −∇ · σs + F̃ + φρsg (4)

where φ is the local mean solids volume fraction, ε is the local mean bed voidage (ε = 1− φ), and
ρf and ρs are the fluid and solid phase densities respectively. The locally averaged interstitial fluid
velocity and particle phase velocity vectors are written in the laboratory frame of reference as u
and v respectively. The fluid and solid phase stress tensors (defined in a compressive sense) are
represented by σf and σs . The gravity force vector is g, and k is the unit vector pointing in the

positive vertical direction against gravity. F̃ represents the fluid-particle interative force per unit



of bed volume, which results from the relative motion of the fluid and particle phases. Writing the
equations in this way introduces the wavespeed ω, which is used in this analysis as a bifurcation
parameter.

The fluid phase stress tensor is represented by σf and is, in general, a function of the rate
of deformation of the fluid phase. A form analogous to a Newtonian fluid will be assumed for the
fluid phase stress tensor [10]:

σf = PI − µ
[
∇u +∇(u)T−

( 2

3
− λ

µ
)(∇ · u) I] (5)

where P is the fluid pressure, and µ and λ are the fluid shear and bulk viscosities respectively. For
the particle phase, continuum mechanics arguments provide a constitutive relation for σs in terms
of the rate of deformation of the particle phase (Anderson & Jackson [26]). The particle phase
stress tensor takes the form:

σs = PsI − µs

[
∇v +∇(v)T−

( 2

3
− λs

µs

)(∇ · v) I] (6)

where Ps is the solid phase pressure, and µs and λs are the effective shear and bulk viscosities
respectively. In this study, we have adopted a closure from the work of Johnson & Jackson [27] for
expressing Ps as a monotonically increasing function with respect to solids volume fraction φ:

Ps =
goφ

m1

(φp − φ)m2
(7)

where go is a constant, and φp represents the solids volume fraction under close-packed conditions
(φp = 0.65, Berryman [30]). We have considered both a linear form for Ps (m1 = 1 and m2 = 0)
and a non-linear form (m1 = 1 and m2 = 2) [22]. The shear viscosity of the solid µs is expected to
be a monotonically increasing function with respect to φ [22]:

µs =
Rφ

1− (φ/φp)
1/3

(8)

where the value of parameter R is selected to yield a shear viscosity within a range suggested by
experiments. The bulk viscosity is assumed to be zero (λs = 0) in this study [26].

The force due to the relative motion of the fluid and solid (F̃) consists of a frictional or
“drag” force in the direction of fluid flow, which is a function of slip velocity between the particles
and fluid, and a force of virtual mass, which is a function of the acceleration reaction of fluidized
particles induced by a change in fluid phase momentum. We have adopted a general closure from
[26] to express this force term:

F̃i = εβ (u− v) + φCρf
d (u− v)

dt
. (9)

The first term on the right hand side of equation 9 represents the drag on the particles due to
the flow of fluid where β is the drag coefficient. A convenient form for a monocomponent bed is
the Richardson & Zaki relation [28], which expresses the interstitial fluid velocity in the vertical z
direction (uz) as a function of bed expansion φ:

uz = vt (1− φ)(n−1) (10)



In this expression, vt is the terminal settling velocity (normal bed mode) or rising velocity (inverse
bed mode) of a single particle in an infinite fluid medium. The empirical correlation index (n) is a
function of the local voidage and particle Reynolds number Re computed at vt [28]. The settling
(or rising) velocity is computed under equilibrium conditions when a single sphere is allowed to
settle by gravity (when ρs > ρf ), or rise by buoyancy (when ρs < ρf ) in a viscous fluid at constant
velocity. The drag force coefficient (in expression 9), derived from the Richardson–Zaki relation for
a uniformly fluidized bed, is written as,

β =
φ (ρs − ρf ) gz

vt (1− φ)(n−1)
(11)

where gz is the standard acceleration of gravity. Using the particle Reynolds number defined as,

Re =
2rpvtρf

µ
(12)

vt is computed using the equilibrium force balance relationship:

FD + FB = FG (13)

where F is the force per unit volume exerted on a single spherical particle of radius rp, and subscripts
D, B and G represent ‘drag’, ‘buoyancy’, and ‘gravity’ respectively. The individual force expressions
are written as,

FD =
π

2
ρfv

2
t r

2
pβD (14)

FB = +
4π

3
ρfr

3
pgz (15)

FG = −4π

3
ρsr

3
pgz (16)

The case studies examined in this work fall within the intermediate flow regime defined by
1 ≤ Re ≤ 103 where the drag coefficient βD in equation 14 is estimated by βD ≈ 18Re−0.6 (Denn
[29]). Using the force balance relationship (equation 13), vt can be estimated by,

vt ≈
[
2gz

27

(
ρs

ρf

− 1

)]5/7

(2rp)
8/7

(
ρf

µ

)3/7

(17)

Hence the terminal velocity (normal mode) is positive, and the rising velocity (inverse mode) is
negative due to the sign of the term (ρs/ρf − 1).

The second term on the right hand side of equation 9 represents the force of virtual mass,
which is considered to be important in liquid-fluidized beds. C is the virtual mass coefficient. The
relative acceleration rate takes the following form [26]:

d (u− v)

dt
=

∂

∂t
(u− v) + v · ∇ (u− v)



3 Linear stability analysis

The simplest solution to the model equations 1 through 4 represents that of the uniform fluidization
state where; the local mean particle velocity vector, v is zero; the local mean fluid velocity vector,
u is constant in space and time and directed in either the positive or negative vertical direction
depending on the term (ρs/ρf − 1) in equation 17; and the local mean solids volume fraction, φ is
spatially uniform and constant in time. Under these conditions,

φ = φo (18)

ε = εo = (1− φo) (19)

u = ±kuo (20)

v = 0 (21)

where the subscript ‘o’ is used to indicate that a quantity is evaluated at conditions corresponding
to the uniform base state. In the absence of velocity gradients, all inertial and viscous force terms
reduce to zero. Moreover, the bed is considered homogeneous with respect to the locally averaged
particle concentration ρsφo. As a result, the gradient of the isotropic compressive force term (∇Ps)
also goes to zero, and the pressure gradient across the bed is due only to the dynamic fluid pressure
in the direction of fluid velocity. Since we are interested in the stability of the uniform base state,
we impose a perturbation in the form of a localized voidage disturbance having small amplitude,
and rewrite the equations in terms of perturbation variables φ′, ε′, u′, v′ and P ′, which are defined
as,

φ = φo + φ′ (22)

u = ±kuo + u′ (23)

v = 0 + v′ (24)

P = Po + P ′ (25)

The equations are linearized about the uniform base state by substituting the above expressions for
φ, ε, u, v and P (equations 22 through 25) into equations 1 through 4, and performing a Taylor
series expansion about the steady state solution. Neglecting terms in the series involving powers
greater than one, and elimating products of perturbation variables results in a system of linearized
partial differential equations (PDEs) written in one-dimension z as,

∂ε′
∂t

+ εo∇ · u′+ (uo − ω)k
∂ε′
∂z

= 0 (26)

∂φ′
∂t

+ φo∇ · v′ − ωk
∂φ′
∂z

= 0 (27)

ρf

(
1 +

φoCo

(1− φo)

)[
∂u′
∂t

+ (uo − ω)k
∂u′
∂z

]
− φoCoρf

(1− φo)

[
∂v′
∂t

− ωk
∂v′
∂z

]
= (28)

−∇ · P ′+ (λo + 1/3µo)∇ (∇ · u′) + µo∇2u′ − βo (u′ − v′)− β′oφ′uok(
ρsφo +

φoCoρf

(1− φo)

)[
∂v′
∂t

− ωk
∂v′
∂z

]
− ρfφo

(
1 +

Co

(1− φo)

)[
∂u′
∂t

+ (uo − ω)k
∂u′
∂z

]
= (29)

−P ′so∇ · φ′+ (λso + 1/3µso)∇ (∇ · v′) + µso∇2v′+ βo (u′ − v′) + β′oφ′uok− φ′ (ρs − ρf ) gzk



where the terms β′o and P ′so are used to represent the following derivatives evaluated under con-
ditions of uniform fluidization:

β′o =

(
∂β

∂φ

)
φ=φo

P ′so =

(
∂Ps

∂φ

)
φ=φo

These equations have been made non-dimensional by taking the particle radius rp as a length scale,
and the interstitial fluid velocity at uniform fluidization in the axial direction ±(uzo) as a velocity
scale computed using the Richardson & Zaki form. Hence, in normal mode operation, fluid velocity
is in the positive vertical z direction (+uzo) and in the direction of gravity (−uzo), in the inverse
mode. The fluid to solid density ratio is defined as δ = ρf/ρs; time is scaled with ±(rp/uzo); and β
is scaled with ±(ρsuzo/rp). The particle phase pressure Ps and constant go are scaled with ρs(uzo)

2,
and therefore always positive. Scaling results in two dimensionless groups: the Froude number (Fr)
defined as Fr = u2

zo/gzrp, and the particle Reynolds number defined as Rep = (ρsrp | uzo |)/µs. Rep

is computed at uzo, and differs from Re computed at vt, which is used to determine the Richardson-
Zaki correlation index n (see equation 10). Rep only considers fluid velocity magnitude | uzo | so
that the sign of Rep is always positive. This way, Reynolds number effects in the two bed modes
can be compared without regard to flow direction. Using a factorization method [26], the velocity
terms can be eliminated from equation 29 by substituting expressions for ∇ · u′ and ∇ · v′ from 26
and 27 into the divergence of equation 29 to obtain a single scalar equation, which is linear in the
perturbation variable φ′ [20]:

Lφ′ = 0 (30)

where the linear operator L is defined as

L = A∂2
t̄ + 2

(
C̃ − Aω̄

)
∂t̄∂z̄ −M∆ +

(
Aω̄2 − 2C̃ω̄ + C̃

)
∂2

z̄

+E∂t̄ + (D − Eω̄) ∂z̄ + (Jω̄ −H)δ∂t̄ − Jδ∂t̄

The overbar designates scaled variables, and ∆ is the Laplacian operator. Substituting in the drag
force coefficient βo, evaluated under steady state conditions from equation 11, the coefficients in
equation 30 are defined as

A = Fr

[
(1− φo)

δφo

+ 1 +
Co

φo (1− φo)

]
; C̃ = Fr

(
1 +

Co

(1− φo)

)

D =
(1− δ) n

δ
; E =

(1− δ)

δφo

; H = 0

J =
Fr

Repφo

(1− φo)

δφo

; M =
FrP̄ ′so (1− φo)

δφo

When the base state of uniform fluidization is unstable, the fastest growing disturbance takes the
form of a one-dimensional vertically traveling wave having no transverse structure. Thus, we seek
a solution to equation 30 in the form of a plane wave disturbance φ′ = φ̂exp(st)exp(κ · x) having
a complex amplitude φ̂, and wavenumber vector κ. The position vector is denoted by x, and s
represents a complex conjugate s = ζ ± iχ. Substituting in the expression for φ′ and its derivatives
into 30, we obtain the following dispersion relation expressing wave velocity ω as a function of
wavenumber κ (in one dimension) in the traveling wave frame:

A (s− iκzω)2 + (s− iκzω)
(
E + 2iC̃κz + Jκ2

z

)
+ iDκz +

(
M − C̃

)
κ2

z + iHκ3
z = 0 (31)



The quantities s, ω and κz are scaled quantities unless specified otherwise. The overbars have been
omitted for convenience. Eigenvalues σ = s− iκz can thus be obtained from this dispersion relation
in any traveling wave frame. In the laboratory frame (ω = 0), complex eigenvalues s1,2 = ζ ± iχ
describe one-dimensional periodic wave solutions satisfying the system of linearized equations 26
through 29 where the real part of s (ζ) determines the growth (or decay) rate of the disturbance,
and the imaginary part (χ) determines the propagation velocity of the wave. In the laboratory
frame of reference, it has been shown by Göz [25] and Göz et al. [1] that the base state is linearly
stable to disturbances of small amplitude if the following two conditions are met:

f(d) ≥ 0; f(h) ≥ 0

where f(d) and f(h) are not independent of one another, and

f(d) = m− c + 2cd− d2, f(h) = m− c + 2ch− h2 (32)

m = M/A , c = C̃/A , d = D/E , h = H/J

This criterion is based upon the behavior of ζ, the real part of s at small and large wavenumbers. In
each system this work examines, it can be shown that d is always greater than h and f(h) is always
greater than f(d). Hence for all conditions f(d) < 0, the base state is unstable to small disturbances,
and at f(d) = 0 the base state is marginally stable at some value φc. This condition allows us to
calculate a minimum value for the particle pressure derivative P ′so evaluated at φo = φc at which
point we might suspect the state of uniform fluidization loses stability. As recognized by Garg &
Pritchett [11], the contribution of a force term in the momentum balance equations, proportional to
the gradient of φ, and monotonically increasing with respect to φ, is necessary to stabilize the bed.
The particle phase isotropic compressive force, Ps provides such a force term. It can be shown in
this work that the stability of the uniform state is extremely sensitive to the Taylor series expansion
of this term, and P ′so, is thus regarded as a valuable measure of bed stability in the neighborhood
of the uniform base state. In this study we examined closures for Ps defined by equation 7. We see
from the derivative of Ps that the value of the constant go is useful for comparing the stability of
two fluidized systems at φc under identical operating conditions.

We know that a Hopf bifurcation point is possible when the vector field, which has been lin-
earized about the base state, has a set of purely imaginary eigenvalues with all remaining eigenvalues
having non-zero real parts. It is at these values that one-dimensional traveling waves bifurcate from
the steady state solution. Göz & Sundaresan [20] show that by setting s = 0 in equation 31, we
can obtain the propagation velocity of the wave (ω = ωcrit), and the critical wavelenth (κz = κcrit)
at the Hopf bifurcation point as,

ωcrit = c +
(
c2 + m− c

)1/2
κcrit =

[
E (d− ωcrit)

J (ωcrit − h)

](1/2)

These results provide criteria for comparing the bifurcation structure of traveling wave solutions in
the vicinity of φc.

4 Quasi-steady periodic solutions

In this section, we compute quasi-steady periodic solutions in the traveling wave frame (of reference).
The derivation which follows is based upon that performed by Needham & Merkin [24] using two-
phase continuum equations of continuity and motion describing a single-component gas-fluidized



bed. The equations we derive consider the viscous and inertial effects of the fluid phase (including
virtual mass), which were considered negligible by these authors in their analysis of gas systems. We
consider one-dimensional vertical flow in normal and inverse fluidized beds for which equations 1
through 4 apply. We simplify matters by adding the two continuity equations 1 and 2 in the
laboratory frame of reference (ω = 0), and then integrate with respect to z to obtain the following
equation in one-dimension z:

(1− φ)uz + φvz = M̃(t) (33)

where M̃(t) is some function of time (constant with respect to space), and uz and vz are used to
represent the locally averaged fluid and solid phase velocities respectively in the axial direction z.
Equation 33 replaces equation 1 in this analysis. The non-dimensional equations can be written in
one-dimension in the laboratory frame of reference as,

(1− φ)ūz + φv̄z = M̄(t) (34)

∂φ

∂t̄
+

∂ [φv̄z]
∂z̄

= 0 (35)

φ

[
∂v̄z

∂t̄
+ v̄z

∂v̄z

∂z̄

]
− δφ

[
∂ūz

∂t̄
+ ūz

∂ūz

∂z̄

]
=

4η

3Rep

∂2v̄z

∂z̄2
− ∂P̄s

∂φ

∂φ

∂z̄
− φ

Fr
(1− δ) + (36)

φ (1− δ)

Fr

(1− φo)
n

(1− φ)n (ūz − v̄z) +
φ

(1− φ)
Cδ

[(
∂ūz

∂t̄
+ ūz

∂ūz

∂z̄

)
−
(

∂v̄z

∂t̄
+ v̄z

∂v̄z

∂z̄

)]
where all scaled quantities are represented with an overbar. The solid phase viscosity µs is scaled
with the viscosity of the particle assembly at uniform fluidization condition, µso, evaluated at
uniform solids volume fraction φo. This dimensionless quantity is defined as η = µs/µso. We
assumed that the fluid and solid phase bulk viscosities λ and λs both equal zero, and the particle
shear viscosity µs takes the form of expression 8. The drag coefficient β has been replaced by

β̄ =
φ (1− δ)

Fr

(1− φo)
n

(1− φ)n

For simplicity, we assumed a linear form for Ps defined by equation 7 where m1 = 1 and m2 = 0
If the base state of uniform fluidization is unstable to small amplitude disturbances in voidage,
a bifurcation to a family of traveling waves may be possible. We seek quasi-stationary periodic
solutions to equations 34, 35 and 36 by transforming these equations to a frame of reference,
which moves at the same velocity as the wave. We first introduce the moving coordinate system
(Y = z−ωt), where the wave velocity (ω) is a constant, and serves as the bifurcation parameter. We
then transform the equations by incorporating the dimensionless derivatives ∂z̄ = ∂Ȳ and ∂t̄ = −ω̄∂Ȳ

where:

ω = ±ω̄uzo

Ȳ = z̄ − ω̄t̄

At uniform fluidization, we know from equations 20 and 21 that v̄z = 0 and ūz = 1. From
equation 34, M̄ = (1− φo) and

ūz =
(1− φo)

(1− φo)
− φ

(1− φo)
v̄z (37)

Transforming equation 35 to the traveling wave frame,

−ω̄
∂φ

∂Ȳ
+

∂ [φv̄z]

∂Ȳ
= 0 (38)



and integrating with respect to Ȳ yields φ (v̄z − ω̄) = N̄ where N̄ is a constant. Using conditions
at uniform fluidization, we find N̄ = −φoω̄, and

v̄z = ω̄

(
1− φo

φ

)
(39)

Substituting the expressions for ūz and v̄z (from 37, 39) and their derivatives with respect to Ȳ
into equation 36 yields a single second order equation in φ. Since we seek periodic solutions to
equation 36, we work in the phase plane (φ, Ω), where Ω = dφ/dȲ , and write two first order
differential equations,

f1 =
dφ

dȲ
= Ω (40)

f2 =
dΩ
dȲ

=
2Ω2

φ
+ Bφ2

[
ḡo −

φ(1− φo)2(1− ω̄)2δ
(1− φ)3

(
1 +

C

(1− φ)

)
− (

ω̄φo

φ
)2
(

1 +
Cδ

(1− φ)

)]
Ω (41)

− Bφ3(1− δ)
Fr(1− φ)(n+1)

[
(1− φo)(n+1)(1− ω̄)− (1− φ)(n+1) +

ω̄φo

φ
(1− φo)n(1− φ)

]
where the coefficient B is defined as,

B =

(
3Rep

4ηω̄φo

)
The simplest solution to equations 40 and 41 is that which represents the uniform fluidized state,
φ = φo and Ω = 0. Periodic solutions corresponding to traveling waves are closed orbits, which
surround the equilibrium state (φo, 0) in the phase plane (φ, Ω). Such solutions are found by
determining the two eigenvalues s1,2 = ζ ± iχ of the linearized equations f1 and f2, which are

s1,2 =
1

2

[
trJ̃±

√
(trJ̃)2 − 4 | J̃ |

]

where J̃ is the Jacobian matrix.

5 Results

5.1 Linear stability analysis

In this section, we examine instabilities of fluidized beds operating in normal and inverse mode. The
beds have been uniformly expanded with water to reach a marginally stable and spatially uniform
steady state defined by a critical solids volume fraction φc = φo. We investigated the stability
of this base state against perturbations to the flow distribution in the form of localized voidage
disturbances of small amplitude. In order to investigate the effect of the Fr number on overall
bed stability, we considered examples of normal and inverse beds having comparable Fr numbers
and Fr numbers, which differed by as much as a 4:1 ratio. We focused on this dimensionless group
because of its identified importance in distinguishing instability behavior in gas- and liquid-fluidized
beds as reported in the theoretical and experimental literature.

In the experimental work of Wilhelm & Kwauk [7], bed behavior is differentiated as being
either particulate (having greater operational stability), or aggregative (exhibiting more complex
bubbling behavior) based primarily on the Fr number. These authors predict that the higher the



Fr, the more likely the bed is to bubble, and exhibit aggregative behavior. Attempts to confirm
the empirical significance of the Fr number have successfully been made by other researchers. For
example, Anderson et al. [14] and Glasser et al. [22] show qualitative differences in the structure of
two-dimensional traveling wave forms, which bifurcate from the uniform fluidization state in a two-
dimensional stability analysis of gas- and liquid-fluidized beds. Gőz & Sundaresan [20] show similar
results in a low amplitude analysis. However, Fr numbers in gas- and liquid-fluidized systems can
vary by several orders of magnitude. The inverse mode of operation provides a unique opportunity
to take a closer look at the effect of fluidization direction and Fr number in uniformly fluidized
beds described by two sets of subtly varying dimensionless groups.

Case I: Comparable Fr number
At this stage, it is useful to consider some specific examples of water-fluidized beds whose particle
properties are shown in Table 1. We have chosen two systems, Case I and Case II, which are
realistic so that future experimental work might be possible. We first consider the example of
Case I; the bed operating in normal mode consists of 775µm water saturated carbon char particles
(ρs = 1500 kg/m3), and the inverse bed consists of 1000µm plastic particles (ρs = 666.7 kg/m3).
The particles are considered to be spherical, and the wall-effects of the fluidization column are
not considered in the calculation of rising and settling velocities. Particle size and density were
selected, such that the terminal settling velocity in normal mode would be exactly equivalent to the
terminal rising velocity in inverse mode for an individual particle in an infinite volume of fluid. As
a result, the Fr numbers are comparable in magnitude and always positive because of the squared
uzo term; however, they are not identical. The diameter of the low density plastic particles is 25%
larger than the carbon in order to obtain equivalent rising and settling velocities. We have not
specified the plastic material, only its density and size. However, we have assumed that the plastic
has a non-porous surface, although it may be impregnated with air. As a basis for comparison,

Table 1: Particle properties of water fluidized beds: Case I & II

Particle Properties
Bed dp ρs †vt

Case Type Material (µm) (kg/m3) (mm/s)

I normal carbon-char* 775 1500** 50.4
inverse plastic 1000 666.7 -50.4

II normal glass beads 1000 2200 126.0
inverse plastic 1000 454.5 -71.7

* water impregnated
**mean density of water saturated hollow char
† velocity in the intermediate flow regime calculated using Denn (1980).

we chose to look at bed conditions at a critical solids volume fraction of φc = 0.576 [23]. The
dimensionless parameters for Case I under these conditions are shown in Table 2 for the two modes
of operation. The minimum particle pressure constant go(min) was computed at the point when



the bed is marginally stable at φc using the non-linear closure for Ps taken from equation 7 with
m1 = 1 and m2 = 2, and the stability condition from [20] (see equation 32). The normal bed has a
fluid to solid density ratio δnorm, which is reciprocal to that of the inverse bed δinv = 1/δnorm. All
dimensionless quantities are based on a length scale of rp and velocity scale ±(uzo). Based on linear

Table 2: Dimensionless parameters of water fluidized beds at φc = 0.576: Case I & II

Dimensionless Bed Parameters
Case Bed δnorm Rep Fr go(min) †uzo

Type δinv ×103 ×102 ×103 mm/s

I normal 1/1.5 6.7 1.9 2.3 8.4
inverse 1.5/1 4.1 1.7 3.5 -9.0

II normal 1/2.2 42.6 16.2 1.4 28.2
inverse 2.2/1 6.4 4.0 4.3 -14.0

† fluidization velocity at φc =0.576 in water.

stability results of primary instabilities in gas- and liquid-fluidized beds [20], one might expect that
the limiting value of go(min) would be greater in the bed having the higher Fr number (in this
case, the normal bed). This reasoning is consistent with the criterion established by Wilhelm &
Kwauk [7]. In Case I however, go(min) is greater in the inverse bed of plastic particles even though
the Fr number is slighly lower than in the normal bed of carbon particles. In fact, it can be shown
from equation 32 that at the point of marginal stability (fd = 0 at φo = φc), the constant go(min)
is independent of Fr and a function only of the fluid to particle density ratio δ. We now move on to
investigate the effect of Fr number on relative instability strength, which we have measured using
both the magnitude of the maximum dimensionless growth rate | ζmax | and the critical wavenumber
κcrit at which saturated one-dimensional traveling waves bifurcate from the steady state solution.

The linear stability of the uniform state against one-dimensional disturbances is illustrated
in figures 1(a) and 1(b) for the Case I normal and inverse beds, respectively, whose properties and
dimensionless parameters are described in Tables 1 and 2. In these figures, the real part (ζ) of the
complex growth rate (s) of a one-dimensional, vertically traveling disturbance is plotted versus the
wavenumber κz for a range of φo (≤ φc) values. The plotted quantities are dimensionless, and since
the units for ζ are reciprocal seconds (s−1), the growth rate is scaled with −(uzo/rp) in the inverse
bed. We have thus plotted −ζ versus κz in figure 1(b) so that actual growth (or decay) of the wave is
obvious to the reader. We have examined the linear stability of the base state for various φo values,
which are indicated in the figure captions. Computed results for the Case I stability analysis are
tabulated in Table 3 for direct comparison. Figures 1(a) and 1(b) show that both beds are stable at
all vertical wavenumbers for φo ≥ φc since the (dimensional) real part of s is always less than zero in
this range. At φc = 0.576, the bed is considered to be marginally stable. For φo < φc, the uniform
state is unstable for a finite range of κz values. As φo decreases, the bed becomes more unstable at
higher values of κz, and there is a corresponding increase in the maximum (dimensionless) growth
rate of the wave (indicated by | ζmax |) as shown in Table 3. In this table, we have also included the
dimensional maximum growth rate ζ∗max to compare the relative magnitudes of the growth rates in



Table 3: Linear stability of water fluidized beds at values φo < φc: Case I & II

Linear Stability Analysis
Case Bed Type φo Fr go | ζmax | ζ∗max †ωcrit †κcrit

×102 ×103 ×104 ×103

I norm 0.57 2.0 2.1 2.0 4.5 1.58 0.138
inv 1.7 3.3 1.5 2.8 1.55 0.134

norm 0.55 2.4 1.8 17.0 41.8 1.10 0.318
inv 2.1 2.8 14.5 29.4 1.11 0.308

norm 0.54 2.6 1.6 25.0 64.4 0.91 0.400
inv 2.3 2.5 21.5 45.6 0.93 0.390

II norm 0.57 17.1 1.3 5.0 28.9 1.40 0.153
inv 4.2 4.1 2.0 5.8 1.51 0.135

norm 0.55 20.0 1.1 65.0 407.0 0.96 0.361
inv 5.0 3.4 17.0 53.4 1.09 0.310

norm 0.54 21.6 1.1 100.0 651.0 0.78 0.463
inv 5.5 3.1 26.0 85.2 0.90 0.396

∗ dimensional maximum growth rate evaluated at φo having units of s−1.
† evaluated at the Hopf bifurcation point

the two beds.

We can see from these figures and from the tabulated data that both ζ∗max and | ζmax |
corresponding to the higher Fr (in this case, the normal bed of carbon) are always greater than those
for the lower Fr (inverse bed). These data suggest that instabilities occurring in the neighborhood
of the base state in normal fluidization grow at a much faster rate than in the inverse bed, even
though the inverse bed has a higher propensity to become unstable as previously recognized. We
have thus considered two measures of bed stability; viz. the propensity of the bed to become
unstable, as measured by the relative value of go(min) computed at φc; and the strength of the
instability, as measured by the maximum growth rates ζ∗max and | ζmax | of traveling wave solutions.
These results are consistent with the results of [20] for gas and liquid systems when one considers
their dimensional predictions of maximum growth rate. These authors found that dimensional
growth rates in the air-fluidized system, having a Fr four orders of magnitude greater than the
water-fluidized system, were considerably larger than the water-fluidized bed, which we know to be
less unstable than the air-fluidized bed.

In figures 1(a) and 1(b), let us choose the curve representing φo = 0.54. Beginning at the far
right hand side of the x axis, or highest value of κz, and moving to the left, we encounter a critical
wavenumber value κcrit at point A where ζ = 0, and the two eigenvalues become purely imaginary.
This point is a Hopf bifurcation point, and signals the birth of a family of one-dimensional traveling
wave solutions. Each traveling wave solution moves at a dimensionless wave velocity ω relative to
the laboratory frame of reference, which can be determined as part of the solution. If one were
to travel in a moving frame of reference at velocity ω, the solution would appear to be a steady
state. The Hopf bifurcation points for the values of φo = 0.54 and φo = 0.57 are labeled A and B



respectively, and the values of κcrit and ωcrit are tabulated in Table 3 for these points and at other
φo conditions. Note that the κcrit values are consistently higher in the normal bed, especially at
the lower φo values, and that these results are consistent with higher reported values of | ζmax |.
The effect of Fr number and the fluid to solid density ratio δ on instability strength are further
examined in Case II to follow where beds are selected having Fr numbers differing by a factor of
4 to 1 respectively.

Case II: Fr number differing by 4:1
We attempted to add to our understanding by considering another case (Case II) of water-fluidized
normal and inverse beds having δnorm and δinv, which are further from unity than in the Case I
systems. In this case, 1000 µm heavy glass beads (ρs = 2200 kg/m3) and 1000 µm light plastic
particles (ρs = 454.5 kg/m3) are fluidized with water under Fr number conditions differing by a
factor of 4 to 1 respectively. The large particle density difference of the glass and plastic contributes
significantly to the variation in Fr because of the difference in terminal rising and settling velocities
of the equi-sized particles. Particle properties for the Case II systems are shown in Table 1;
the dimensionless parameters are shown in Table 2 at equilibrium conditions φc = 0.576. In an
experimental system, these fluidized beds would visually appear identical if the particles were the
same color and the beds were both uniformly stable at constant bed voidage. Note in Table 2 that
the computed value for go(min) in the inverse plastic bed is three times that for the normal glass
bed despite the four fold Fr number difference. Based upon the imposed stability criteria, these
results confirm previous findings that the propensity of the bed to destabilize is a function of δ and
independent of u2

zo (1/rp is the same in this case). The uniformly fluidized inverse bed thus appears
to be less stable to perturbations than the normal bed at φo values close to φc due to the ratio of
fluid to solid density alone.

The results of a linear stability analysis of the uniformly fluidized systems in Case II are
reported in Table 3 for various values of φo close to φc. We can see from these data that the growth
rates of the disturbances also follow the same trend as observed in Case I, i.e., | ζmax | and ζ∗max are
much greater in the glass system having the higher Fr number. However, the variation in growth
rate is more dramatic in the glass & plastic beds suggesting a strong dependency on the square of
the fluid velocity term. Moreover in Case II, we see in Table 3 that the Hopf bifurcation points of
the uniform base state in the glass bed occur at higher wavenumber values κcrit, and corresponding
lower ωcrit values than in the plastic bed for every φo value we examined. This means that when
the normal bed becomes unstable, one-dimensional traveling waves in the glass bed grow at a faster
rate and propagate through the bed at a slower velocity than waves moving through the inverse
bed. These results are consistent with growth rate predictions suggesting the relative strength of
unstable waveforms within the δ range investigated can be predicted based primarily on Fr number
with some dependency on δ as shown in Case I. This conclusion is consistent with ideas put forth
previously.

In summary, the Fr number appears to be an important parameter with respect to predict-
ing instability strength, but has no effect on the propensity of the bed to destabilize, since we have
shown that the inverse bed is significantly less stable to perturbations regardless of Fr in all the
case studies examined. These results suggest that δ controls the onset of an instability, and that the
strength of the instability is strongly influenced by Fr and to a lesser extent, δ. The experimental
and theoretical literature clearly show a correlation between Fr number and the likelihood of gas-
and liquid-fluidized systems to exhibit bubbling behavior when the inertial and viscous effects of



the gas system are neglected. It is important to point out that Fr number variation in gas- and
liquid-fluidized systems is quite significant (varying by orders of magnitude) compared to the subtle
variations observed in the water-fluidized systems examined here. Moreover, liquid fluidized beds
are far less likely to “bubble”.

So far, we have examined the linear stability of the uniform base state using the bed
voidage φo as the basis for comparison. This seemed reasonable, since the particle pressure term
plays a dominant role in bed stabilization, and we have represented it as an increasing function
of solids volume fraction. We now move to the traveling wave frame to compute one-dimensional
traveling wave solutions (1D-TW’s) emanating from Hopf bifurcations of the steady state solution.
We compare the bifurcation diagrams and high amplitude wave profiles of 1D-TW’s, which can
suggest the structure of fully developed wave forms.

5.2 One-dimensional traveling waves

Periodic solutions describing a family of one-dimensional traveling waves were computed numerically
using a continuation technique from the software package AUTO (Doedel [31]). This software was
used to compute branches of periodic solutions satisfying the ordinary differential equations 40
and 41 in the phase plane (φ, Ω). We made use of a continuation scheme, which starts at a Hopf
bifurcation of the uniform fluidization state, and uses ω as the continuation or bifurcation parameter.
We present results for the glass bead and plastic beds constituting the Case II systems, which
were previously discussed and whose particle properties and dimensionless parameters are shown
in Tables 1 and 2 respectively. The developed wave structures and amplitudes are much more
dramatic in this case than in the carbon and plastic Case I analysis. The results for the carbon
and plastic beds are qualitatively similar however, and the same conclusions were arrived at in both
cases regarding the behavior of one-dimensional traveling wave structures in inverse and normal
beds.

Figure 2(a) is a bifurcation diagram of one-dimensional periodic wave solutions, which
were numerically computed for the normal bed of water-fluidized glass beads. In this figure, the
l2-norm of Ω, || Ω || is plotted as a function of (dimensionless) wavespeed ω, where || Ω || gives
a measure of the amplitude of the solution with respect to the uniform state. A Hopf bifurcation
of the steady state solution (φo = 0.54, Ω = 0) is represented by point A in this figure, and is the
starting point of the continuation scheme. We see that || Ω || increases with increasing ω, eventually
reaching a maximum point at ω ≈ 1 corresponding to point Q. Beyond this point, || Ω || decreases
steadily with increased wavespeed. Here, waves become steeper and have greater amplitude as the
fluctuation of volume fraction increases about φo. In numerical simulations of bubbling behavior in
normal mode gas-fluidized beds, Anderson et al. [14] show that high amplitude, two-dimensional
traveling wave solutions have bubble-like holes with fluid traveling upwards through the center of
the hole. Particles accelerate downwards through the ‘roof’ (or top) of the bubble, but then begin
to decelerate as they move downwards though the bubble, and exit through the bubble ‘floor’. The
structure developed by this velocity field exhibits a high voidage fluid floor with a rounded roof of
higher particle concentration. These authors show that the asymmetry exhibited in one-dimensional
solutions at high amplitude is indicative of this structure formation.

Periodic solutions describing high amplitude traveling waves, having increased steepness
and a more defined structure, were numerically computed at increased wavespeeds for the system
of glass beads in water. For very steep waves, the computational scheme failed, and further con-



tinuation could not be carried out. Traveling wave profiles computed in the vicinity of point S on
the bifurcation diagram figure 2(a) are shown in figure 3(a) where (dimensionless) Y = z − ωt is
plotted versus φ. In this figure, the asymmetry of the wave structure becomes apparent. Notice
that, as one moves up the y axis from the origin, φ transitions abruptly in the area labelled [1],
and decreases rapidly to a minimum φ value. Volume fraction then transitions back to baseline in
a more gradual manner in the area labelled [2]. The asymmetry exhibited by the one-dimensional
structure is described by a sharp flattened ‘floor’ represented by transition [1], and rounded ‘roof’
represented by transition [2], where ‘top’ and ‘bottom’ are defined with respect to the positive
vertical axis +z.

The bifurcation diagram for the complementary inverse bed of plastic particles in water
is shown in figure 2(b). Although the bifurcation structure is similar in both bed modes, the
bifurcation occurs at a higher ωcrit value (labelled point A) in the inverse bed, and waves have
slightly lower amplitudes. This is because instabilities were found to be weaker in the inverse
bed, as measured by comparatively higher ωcrit and lower κcrit values. Based on the bifurcation
diagrams alone, instability behavior in the two bed modes cannot be distinquished on a qualitative
basis. However, high amplitude wave solutions computed in the vicinity of point R in figure 2(b)
are illustrated in figure 3(b), and describe structures, which are distinct from those computed in
the normal bed of glass beads (curve S, figure 3(a)). In particular, high amplitude one-dimensional
wave profiles in the inverse bed develop very steep, shock-like fronts as one moves down the y axis.
Abruptly, there is a step change in volume fraction φ located at point [1] in figure 3(b). With an
incremental decrease in Y , the system returns to constant φ in a more gradual way (area labelled
[2]). The asymmetry suggests a bubble ‘floor’ at point [1] and bubble ‘roof’ located below it with
respect to the vertical axis +z. The one-dimensional wave structure would appear to be “flipped”
over relative to a wave in the normal bed propagating upwards in the column in the +z direction.
Results also show that 1D-TW’s in the inverse bed always propagate in the direction of gravity for
all the case studies examined.

In summary, we have shown that high amplitude one-dimensional traveling wave solutions
computed from Hopf bifurcation points using a continuation scheme in the bifurcation parameter
ω become steep and highly asymmetric, and that high amplitude 1D-TW’s become shock-like in
the inverse beds we examined. Moreover, the asymmetry of 1D-TW’s of high amplitude is reversed
about the vertical axis suggesting that fully developed bubble-like structures (indicated by asym-
metrical one-dimensional solutions) are flipped over in the two bed modes. This suggests that the
orientation of a (fluid filled) bubble ’floor’ and (particle filled) bubble ’roof’ are reversed with re-
spect to the axial dimension z and that the direction of wave propagation in the two bed modes is
consistent with these findings.

6 Conclusions

The inverse fluidized bed has provided an opportunity to examine unstable flow behavior in beds,
which are described by a range of dimensionless groups not physically realized in normal fluidization
mode. In a linear stability analysis of various sets of uniformly fluidized normal & inverse beds,
the dimensionless Fr number and (to a lesser extent) fluid to solid density ratio δ were shown
to be indicators of instability strength, based upon bifurcation structure and growth rates of one-
dimensional traveling wave solutions. The effect of Fr and δ on instability strength was confirmed
in three case studies of water-fluidized normal & inverse beds having reciprocal fluid to solid density



ratios and operating under identical, similar and differing Fr number conditions. These results are
consistent with experimental and theoretical evidence showing a correlation between Fr number
and the likelihood of gas- and liquid-fluidized systems to exhibit bubbling behavior. The fluid to
solid density ratio δ was shown to be significant with respect to instability onset, defined by the
conditions under which the uniformly fluidized bed is rendered marginally stable. In particular, it
has been shown that, at the point of marginal stability, the particle pressure constant go(min) is
independent of Fr and a function only of the fluid to particle density ratio δ.

In all of the case studies examined, the computed traveling wavespeed ω was shown to be
in the direction of fluid flow. We know from the experimental literature that voidage waves travel
upwards through the bed in normal mode fluidization, but since there is no experimental evidence of
inverse bed behavior, we can only presume that disturbances propagate downwards through the bed,
and perturbations in the positive vertical direction (against fluid flow) are damped out. Moreover,
high amplitude, one-dimensional traveling wave solutions were steep and highly asymmetrical about
the horizontal axis where the asymmetry was reversed or “flipped over” in the two bed modes.
This suggests that fully developed bubble-like structures are orientated in the direction of fluid
flow with respect to a particle rich bubble ‘roof’ and fluid-filled bubble ‘floor’. Results from these
analyses naturally suggest a comprehensive experimental study be carried out to bring forth further
qualitative differences in the unstable flow regime.

In a case study involving normal and inverse beds operating under equivalent Fr num-
ber conditions, results show eigenvalue structure to be identical in the two modes, and therefore
independent of the quantity δ. Although the bifurcation structure of the steady state solution is
qualitatively similar in the two bed modes, Hopf bifurcation points differ quantitatively in a way
that is consistent with linear stability results of beds with differing Fr numbers. This confirms that
δ along with Fr number affects the strength of one-dimensional waves as measured by the critical
wavenumber at the Hopf bifurcation.
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Figure 1: Case I: Linear stability of the uniform state.  Real part of the (complex) 
growth rate (s=ζ+iχ) as a function of κz for various values of φo ≤ φc = 0.576.  
Hopf bifurcation points located at A and B.  All quantities are dimensionless. 
 

(a) Normal bed of 775 µm carbon particles in water.  Points A (κcrit = 0.400, 
φo = 0.54) and B (κcrit = 0.138, φo = 0.57). 

(b) Inverse bed of 1000 µm plastic particles in water. Points A (κcrit = 0.389, 
φo = 0.54) and B (κcrit = 0.134, φo = 0.57). 
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Figure 2: Case II: Bifurcation diagram for one-dimensional traveling waves.  The 
l2 norm ||Ω|| versus bifurcation parameter ω in water fluidized beds. Hopf 
bifurcation (point A) at equilibrium point (0.54,0). Point Q corresponding to 
||Ω||max.  Continuation scheme fails in the vicinity of points S and R.  All quantities 
are dimensionless. 
 

(a) Normal bed of 1000 µm glass beads in water.  Point A at ωcrit = 0.76, κcrit  
= 0.463.   

(b) Inverse bed of 1000 µm plastic particles in water.  Point A at ωcrit = 0.90, 
κcrit  = 0.396.   
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Figure 3: Case II: Asymmetrical traveling wave profiles corresponding to high 
amplitude one-dimensional traveling wave solutions computed in the vicinity of 
points S and R in figures 2(a) and 2(b) respectively. (Dimensionless) Y=z-ωt 
versus solids volume fractionφ. 
 

(a) Normal bed of 1000 µm glass beads in water.   
(b) Inverse bed of 1000 µm plastic particles in water.  
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