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Introduction 
 
Proper scaling from laboratory-scale to full scale is still the major challenge when using 
fluidized beds for processes in chemical industry. Often, fluidized beds behave differently on 
the large scale than on lab-scale, which is an obstacle for the testing and development of 
industrial applications of fluidized bed reactors. One example is that bubbles rise faster in 
larger fluidized beds, due to decreased wall effects, and have less exchange with the dense 
phase. When an industrial fluidized bed installation with a novel design is planned, this often 
requires first studying a pilot-scale model to avoid unexpected effects at the large scale: 
direct scaling-up from lab-scale to industrial scale is very risky. 
 
Scaling rules based on dimensionless groups have been proposed to facilitate scaling (e.g., 
Fitzgerald and Crane, 1980, Glicksman, 1984), but they give the problem of contradictory 
demands or at least experimentally difficult demands (e.g., the need of exotic gases or 
particles to obtain a certain density and/or viscosity ratio). Simplified scaling rules have been 
proposed to overcome these problems (e.g, Horio et al., 1986, Glicksman, 1988), but it is 
unsure if the exclusion of certain dimensionless groups deteriorates the scaling quality. The 
dimensionless groups arise from the strongly simplified Eulerian-Eulerian governing 
equations for multiphase flow. In validating the simplified scaling rules by performing 
experiments at various scales, discussion remains if a disagreement is due to failing of the 
simplified scaling rules or incorrect execution of the experiments. 
 
In the present study, we employ a Eulerian-Eulerian computational fluid dynamics code, 
employing kinetic theory of granular flow, to model fluidized beds of various sizes to study the 
difference in behaviour. The goal is to obtain a reliable conclusion on the applicability of the 
various sets of existing scaling rules. Moreover, the importance of the various dimensionless 
groups in the scaling rules are studied, which can lead to an improvement of existing scaling 
rules. 
 
 
Scaling rules 
 
Full set 
Glicksman (1984) obtained the full set of scaling parameters by non-dimensionalisation of the 
mass and momentum balances along with their boundary conditions. Important assumptions 
used in deriving the parameters are: 



- The fluid is incompressible 
- Inter-particle forces other than mechanical forces due to collisions are omitted 
- The influence of the particle coefficient of restitution and the friction coefficient on 

inter-particle collisions is not included 
With these assumptions, the following set is derived (Glicksman, 1984): 
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Gs expresses the solids circulation rate for circulating fluidized beds and is not relevant for 
the captive fluidized beds we focus on in this study. It is important that the reactor 
configuration is equal on both scales. This applies to internals, distributor configuration and 
bed height-to-width ratio and ratios of other geometrical bed dimensions, and is expressed in 

the 1
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L
L

 term. The 
s o

L
u

β
ρ

 term, containing the fluid-to-particle drag coefficient, is related to the 

Ergun equation (low gas velocities, dense bed) or to the expression for single sphere drag 
(high gas velocities, diluted bed). When the Ergun equation is non-dimensionalised it is 

shown that this term depends on the Reynolds number and 
p

L
d

. By substituting these 

equations into Eq. (1), the following set of dimensionless parameters emerges, which is 
called the full set: 
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The particle size distribution and the sphericity of the particles should be equal. Glicksman 

(1984) assumed that the 2
o

s o

P
uρ

group could be neglected in the case of low gas velocities 

relative to the speed of sound. This assumption provides a degree of freedom in scaling 
simulated fluidized beds. This group would fix ρs in scale-up. By neglecting this group, values 
of ρs, µ and ρf can be varied while keeping the Reynolds numbers constant. Glicksman also 
omitted the particle and gas stress tensors and the pressure gradient term in the derivation of 
the scaling rules. The equation expressing this last term was non-dimensionalized by Foscolo 
et al. (1990) and yielded the Froude number, which was already included in the set. 
 
Simplified set 
In practice, it is found to be difficult to match all parameters expressed in the full set of 
scaling parameters. To be able to match these parameters, it will often be needed to use very 
exotic particles and gases. To overcome this problem, Glicksman et al. (1993) derived the 
simplified set, which includes less parameters than the full set. The drag coefficient is 
expressed in a simplified form of the Ergun equation for different regimes. The set given in 
Eq. (3) was derived at low and high Reynolds numbers.  
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Also for this set all geometrical properties should be equal for both beds. Glicksman et al. 
(1993) assume that it is reasonable to expect that this set is valid over the entire range of 
conditions for which the Ergun equation holds. 



 
Viscous limit set 
The viscous limit set was derived by Glicksman (1988) for dense fluidized beds, at low gas 

velocities, with 4g o pu dρ
η

< . In this region the viscous forces are dominant over the inertia 

forces. Due to the negligible inertia forces the requirements for scaling are less stringent. The 
Ergun equation is limited to its first term, which expresses the drag resulting from viscous 

forces. The 
s o

L
u

β
ρ

 term in this case is proportional to 
2
ou
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 and o
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u
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. This results in a lower 

number of dimensionless parameters that have to be matched for correct scaling: 
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Simulations 
 
Computational fluid dynamics (CFD) is a method used for design and optimisation in a wide 
range of engineering applications such as aircraft, pumps, and other equipment related to 
single phase operations. CFD models are seldom applied to gas-solid flow in industry. The 
models that are used nowadays can be divided in two groups, Eulerian-Lagrangian models 
and Eulerian-Eulerian models. Eulerian-Lagrangian models calculate and describe the path 
of discrete particles in the gas flow. This type of modelling requires a large amount of 
memory and long calculation times. In this paper the Eulerian-Eulerian approach is used. 
This approach describes the particle phase as a continuum and averages out the single 
particle properties. The advantage of Eulerian-Eulerian modelling is that less memory and 
computational time is necessary. To be able to describe the particles as a continuum the 
kinetic theory of granular flow, which is derived from the kinetic theory of gasses, is used. 
The two phases are considered to be continuous and fully interpenetrating. Computations 
with this model can predict the behaviour of dense-phase particle flows on a realistic 
geometry. For details on kinetic theory of granular flow see van Wachem et al. (2001). 
 
The simulations are performed with the aid of CFX 4.4. The source code of the two-fluid 
model based on kinetic theory for granular flow was implemented and validated by van 
Wachem et al. (2001). For details on used discretisation algorithms, pressure correction 
equations and simulation boundary conditions see van Wachem et al.. The coefficient of 
restitution, expressing elasticity in collisions between particles was set to 0.9. Initial bed 
voidage was set to 0.36 based on random packing of spheres. The simulations are limited to 
two two-dimensional geometries in which front and back wall effects are neglected. The used 
rectangular computational grids for the reference and scaled fluidized bed consist of square 
cells of a height and width of 1 cm x 1 cm and 0.5 cm x 0.5 cm respectively. The grid spacing 
was scaled to obtain the same resolution in the simulations in different scales to be able to 
compare data from the same dimensionless location. 
 
The grid spacing of 1 cm x 1 cm was determined by van Wachem et al. (2001), by changing 
the size until average properties changed by less than 4%. Time discretisation was done with 



fixed time stepping of 1·10-4 s. If simulations did not converge, the fixed time step was set to 
0.7·10-4 s or 0.6·10-4 s. Pressure and voidage values for every grid point were written to a 
binary data file at 1000 Hz. At start up of the simulations the time stepping was stepwise 
changed from 0.5·10-4 to 1·10-4 s. Also a jet disturbance is used for 1 s of real time to break 
bed symmetry, which leads to faster stationary fluidization of the bed. To obtain reasonable 
data sets to compare the large and scaled bed, 49 and 39 s of real time data was simulated 
respectively. To avoid the influence of start-up effects, the first 12 s of each simulation was 
discarded in the signal analysis. 
 
The geometry of the simulated beds was limited to two 2D bed geometries that are scaled 
with a scaling factor m = 2. Details are shown in Table 1. These geometries where chosen to 
limit the necessary computational time to obtain a reasonably large time series of pressure 
and voidage data The mesh size was 1 x 1 cm for the large bed and 0.5 x 0.5 cm for the 
small bed. 
 
Table 1 Bed geometries used in the simulations 

 Large bed Small bed 
Domain height [m] 0.60 0.30 
Width [m] 0.30 0.15 
Settled bed height [m] 0.20 0.10 

 
As reference three large bed simulations were carried out at three different particle Reynolds 
numbers. For every large reference bed three small beds were scaled according to the full, 
simplified and viscous limit set. The particle and gas properties used in these simulations and 
the used gas velocities are shown in Table 2. 
 
Table 2  Parameter settings for the reference bed (large scale) and the small beds scaled using the full, 
simplified and viscous limit set. 

Set dp 
[µm] 

ρs  
[kg/m3] 

ρg 
[kg/m3] 

ηg 
[Pa·s] 

uo  
[m/s] 

umf  
[m/s] 

Rep  
[-] 

 
Reference 396 2600 1.205 1.82·10-5 0.566 0.126 14.83 
Full 198 2012 0.932 4.98·10-6 0.400 0.089 14.83 
Simplified 329 2600 1.205 1.82·10-5 0.400 0.089  8.73 
Viscous limit 469 1300 1.205 1.82·10-5 0.400 0.089 12.43 
 
Reference 361 2600 1.205 1.82·10-5 0.3577 0.1065 8.55 
Full  181 2012 0.932 4.98·10-6 0.2530 0.0752 8.55 
Simplified 301 2600 1.205 1.82·10-5 0.2530 0.0752 5.05 
Viscous limit 428 1300 1.205 1.82·10-5 0.2530 0.0752 7.17 
 
Reference 264 2600 1.205 1.82·10-5 0.130 0.0581 2.27 
Full 132 2012 0.932 4.98·10-6 0.092 0.0411 2.27 
Simplified 221 2600 1.205 1.82·10-5 0.092 0.0411 1.35 
Viscous limit 313 1300 1.205 1.82·10-5 0.092 0.0411 1.91 

Rep is defined as g o pu dρ
η

 

 
The advantage of simulations is that time-series of physical properties can easily be obtained 
at arbitrary positions in the bed without disturbing the hydrodynamics. Moreover, it is easier 
to exactly match the criteria dictated by the scaling rules. For example, finding particles with a 



given density can be hard in practice, but in simulations the density value can easily be 
adapted. A disadvantage of the simulations is the long calculation times that are needed. It 
would be preferably to have time-series in the order of several minutes for the signals 
analysis. While this criterion is already often not met in experimental papers on scale-up, it 
would require excessive calculation times in the computational validation of the scaling rules. 
We will use time-series of 37 s for the large scale and 27 s for the small scale. 
 
 
Signal analysis 
 
In this paper, we will use pressure and voidage signals to investigate the correctness of the 
scaling. Pressure signals have often been used in experimental studies of scaling fluidized 
beds, since pressure is easy to measure and gives a characterization of the global 
hydrodynamics. Voidage signals give an indication of the bubble behaviour only at the 
measurement position in the bed. Both signals are obtained at 16 positions in the bed: the 
vertical position is 0, 25, 50 en 75% of the settled bed height (denoted as h = 0, 0.25, 0.50, 
0.75) and the radial position is at the left wall, halfway the left wall and the centre, in the 
centre, and halfway the centre and the right wall (denoted as r = 1, 0.50, 0, -0.50). 
 
In the past, the validation of scaling rules has often been carried out using qualitative analysis 
methods: plots such as probability density functions or power spectra are visually compared. 
One step to drawing firmer conclusions would be to carry out the analysis in a more 
quantitative way, for example using statistical tests that judge whether or not a difference is 
significant. We will use the Kolmogorov Smirnov test applied to the cycle time distribution and 
the attractor comparison test applied to attractors. 
 
Comparing cycle time distributions 
The Kolmogorov Smirnov test is a standard statistical test to judge whether or not two 
probability density functions show a significant difference. The test yields a P-value 

(probability value). P>0.05 indicates that the 
null hypothesis that the two distributions are 
similar is not rejected. We apply this test to 
the cycle time distribution: the probability 
density function of the cycle times of the 
signal. Figure 1 shows how the cycle time is 
determined from the pressure signal. 
Although the cycle time distribution is 
focussing on the macro-scale, it is a more 
sensitive tool for judging differences in time-
scales in fluidized bed signals than the power 
spectral density (van Ommen et al, 1999). 
We will investigate the cycle time distribution 
both for the pressure and the voidage signal. 
 

Comparing attractors 
A more complete, but less conventional way of judging the similarity in signals is the attractor 
comparison method. We have shown that the attractor comparison method is a sensitive tool 
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Figure 1 Determination of the cycle times τ i from a
pressure fluctuation signal.   



that can be used for the early detection of agglomeration (Van Ommen et al., 2000, Korbee 
et al., 2003) and for judging the similarity obtained in scaling fluidized beds (Van Ommen et 
al., 2004). The attractor comparison method is based on the transformation of a signal into an 
attractor: a multi-dimensional distribution in the state space. Subsequently, two attractors are 
compared using a statistical test. An attractor is a multi-dimensional distribution of delay 
vectors containing successive pressure values (see Figure 2a). The attractor represents 
consecutive states of the dynamic system: it can be seen as a ‘fingerprint’ of the fluidized bed 
hydrodynamics as reflected by the pressure fluctuations in the bed. The attractors obtained at 
the two scales are compared by calculating a statistic S using the Diks et al. (1996) test (see 
Figure 2b). For a more detailed description of the procedure, the reader is referred to Van 
Ommen et al. (2000). S represents the dimensionless distance between the two attractors. In 
this way all attractor properties are taken into account. For attractors generated by the same 
dynamics or mechanism, S has an expectation value of zero and a standard deviation of 
unity. When S is larger than three, we know with more than 95% confidence that the two 
attractors differ significantly, which means that the hydrodynamic behaviour of the fluidized 
beds differs. The attractor comparison method is also applied to both pressure and voidage 
signals. 

 
 
Results and discussion 
 
Cycle time distributions are obtained from pressure and voidage data for the large bed and 
the three scaled small beds. The distributions are compared with the Kolmogorov-Smirnov 
test. If the test yields a P-values below 0.05, then the two scales show a significant difference 
in the signals (indicated with grey in the tables). Table 3 gives the results for comparing the 
cycle time distributions derived from the pressure signals. The table shows that the largest 
discrepancies are obtained for the low particle Reynolds number. For both the intermediate 
and high Reynolds number, the simplified set leads to a reasonable good scaling: for 13 of 
the 16 positions no significant differences are found. Table 4 compares the cycle time 
distributions for the voidage signal. It shows similar trends as for the pressure signal, but on 
the whole more significant differences are found for the comparison of the voidage signals. 
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Figure 2. Schematic representation of (a) the reconstruction of an attractor from a pressure fluctuation
signal, and (b) the comparison of attractors from different scales by the attractor comparison. 



Table 3 P-values obtained from the Kolmogorov Smirnov test applied to cycle time distributions for the pressure 
signals from large and scaled small beds. Significant differences are indicated with grey. h indicates the axial 
position; r indicates the radial position in the bed. 
 

 Full set Simplified set Viscous limit set 
High Rep 
0.75 0.05 0.00 0.00 0.01 0.09 0.06 0.01 0.04 0.28 0.74 0.23 0.00 
0.50 0.00 0.00 0.00 0.00 0.08 0.049 0.08 0.58 0.09 0.09 0.43 0.03 
0.25 0.00 0.00 0.02 0.15 0.09 0.49 0.49 0.47 0.02 0.45 0.99 0.55 
0.00 0.00 0.00 0.00 0.02 0.00 0.13 0.53 0.67 0.00 0.37 0.36 0.66 
Intermediate Rep 
0.75 0.70 0.22 0.00 0.23 0.00 0.04 0.27 0.53 0.00 0.58 0.02 0.31 
0.50 0.72 0.12 0.00 0.04 0.12 0.63 1.00 0.90 0.00 0.01 0.29 0.34 
0.25 0.45 0.62 0.02 0.13 0.36 0.01 0.43 0.01 0.00 0.00 0.93 0.04 
0.00 0.00 0.00 0.00 0.00 0.75 0.35 0.48 0.33 0.00 0.53 0.00 0.02 
Low Rep 
0.75 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.45 0.00 0.00 0.00 
0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 
0.25 0.01 0.00 0.00 0.00 0.00 0.09 0.03 0.01 0.00 0.49 0.02 0.03 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.01 
h↑    r → 1.00 0.50 0.00 -0.50 1.00 0.50 0.00 -0.50 1.00 0.50 0.00 -0.50 

 
Table 4 P-values obtained from the Kolmogorov Smirnov test applied to cycle time distributions for the voidage 
signals from large and scaled small beds. Significant differences are indicated with grey. h indicates the axial 
position; r indicates the radial position in the bed. 
 

 Full set Simplified set Viscous limit set 
High Rep 
0.75 0.63 0.08 0.00 0.11 0.92 0.67 0.03 0.33 0.24 0.01 0.13 0.00 
0.50 1.00 0.02 0.00 0.16 0.61 0.94 0.77 0.98 0.05 0.00 001 0.00 
0.25 0.06 0.03 0.00 0.02 0.64 0.14 0.15 0.57 0.01 0.00 0.04 0.00 
0.00 0.01 0.00 0.00 0.00 0.53 0.01 0.00 0.00 0.00 0.00 0.00 0.00 
Intermediate Rep 
0.75 0.68 0.01 0.07 0.13 0.75 0.01 0.00 0.42 0.00 0.00 0.00 0.01 
0.50 0.01 0.11 0.00 0.60 0.52 0.29 0.01 0.21 0.00 0.01 0.00 0.00 
0.25 0.07 0.00 0.00 0.35 0.44 0.00 0.00 0.00 0.00 0.16 0.00 0.00 
0.00 0.11 0.00 0.00 0.18 0.06 0.00 0.00 0.00 0.00 0.02 0.00 0.00 
Low Rep 
0.75 0.00 0.00 0.02 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 
0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 
0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.88 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 
h↑    r → 1.00 0.50 0.00 -0.50 1.00 0.50 0.00 -0.50 1.00 0.50 0.00 -0.50 

  
The S-values from attractor comparison of pressure signals are given in Table 5; Table 6 
gives the same for the voidage signals. Both tables show trends that are very comparable 
with those for the cycle time distribution: better results for higher particle Reynolds numbers 
and for the simplified set. Using attractor comparison, the pressure signals yield less 
significant differences than the voidage signals. We do not yet have an explanation for the 
difference from the cycle time distribution analysis. At intermediate and high Reynolds 
numbers, the attractor comparison method applied to the pressure signal indicates no 
significant differences when the scaling is carried out using the simplified set. 
 



Table 5 S-values obtained from attractor comparison applied to the pressure signals from large and scaled 
small beds. Significant differences are indicated with grey. h indicates the axial position; r indicates the radial 
position in the bed. 
 

 Full set Simplified set Viscous limit set 
High Rep 
0.75 0.5 1.9 4.6 0.1 -0.6 1.8 -0.4 -0.1 -0.9 -0.2 1.6 3.0 
0.50 1.8 4.1 5.5 -0.6 1.0 -0.5 -0.3 -1.5 1.38 0.5 1.9 -0.4 
0.25 3.0 3.6 3.3 1.0 0.5 0.5 -0.8 0.1 1.85 4.2 0.9 0.9 
0.00 4.8 2.8 1.7 0.1 0.6 -0.2 -1.1 -0.5 1.23 0.4 -0.1 2.4 
Intermediate Rep 
0.75 1.4 -0.2 1.6 -0.3 -0.3 -0.5 -1.1 -0.7 2.6 4.1 0.9 -1.5 
0.50 -0.9 4.0 4.2 1.2 -0.1 0.0 -0.5 -1.6 4.1 0.7 1.0 -1.2 
0.25 0.6 1.6 2.9 2.3 1.8 2.6 -1.1 0.1 3.4 0.8 0.4 0.0 
0.00 2.4 1.0 2.7 1.5 1.6 -1.1 -0.6 -0.9 1.5 -1.0 0.2 0.7 
Low Rep 
0.75 4.0 0.2 1.3 0.9 1.8 1.6 1.6 3.4 -0.7 0.2 5.3 -0.1 
0.50 6.8 3.6 4.1 2.0 1.1 1.7 0.4 2.4 0.5 1.5 7.2 0.1 
0.25 6.3 12.6 5.4 10.3 2.2 4.6 0.9 4.3 0.2 5.5 5.0 2.3 
0.00 11.9 9.0 5.5 9.3 0.2 2.4 0.2 1.0 1.1 2.4 4.5 2.7 
h↑    r → 1.00 0.50 0.00 -0.50 1.00 0.50 0.00 -0.50 1.00 0.50 0.00 -0.50 

 
Table 6 S-values obtained from attractor comparison applied to the voidage signals from large and scaled small 
beds. Significant differences are indicated with grey. h indicates the axial position; r indicates the radial position 
in the bed. 
 

 Full set Simplified set Viscous limit set 
High Rep 
0.75 14.0 3.3 10.9 13.5 4.1 1.6 2.8 1.1 3.9 1.1 18.3 29.5 
0.50 8.4 4.1 6.0 8.1 0.1 -0.4 1.2 -0.2 13.5 3.6 28.1 25.0 
0.25 2.8 3.3 1.5 16.9 0.2 3.4 1.4 1.0 7.5 4.7 8.8 2.4 
0.00 0.1 3.4 3.0 0.5 -0.5 -0.2 0.0 2.5 2.4 6.6 0.1 9.8 
Intermediate Rep 
0.75 16.0 0.1 2.9 24.1 2.5 22.2 4.7 2.8 40.7 11.6 9.0 1.3 
0.50 7.4 2.1 6.0 13.7 1.4 8.3 3.9 6.1 31.6 15.4 5.9 9.7 
0.25 0.9 3.4 8.9 15.5 1.5 13.9 -0.7 7.5 21.3 11.2 7.2 7.1 
0.00 -0.6 -0.1 2.1 5.0 2.3 1.6 0.7 8.7 6.7 7.4 0.3 10.5 
Low Rep 
0.75 24.0 13.0 31.9 13.9 13.4 6.0 23.8 5.3 12.6 1.6 19.2 -0.2 
0.50 20.5 14.7 22.8 11.7 19.0 8.2 19.0 4.1 16.3 1.9 14.7 0.8 
0.25 16.8 9.2 17.4 4.0 10.8 3.2 7.1 2.8 8.0 0.3 12.6 -0.6 
0.00 11.3 14.5 8.3 11.3 8.6 6.1 1.7 7.7 1.5 6.2 1.8 1.3 
h↑    r → 1.00 0.50 0.00 -0.50 1.00 0.50 0.00 -0.50 1.00 0.50 0.00 -0.50 

 
 
The results show that in general the agreement is best for the simplified set. It is surprising 
that the full set – which is stricter than the simplified set – leads to worse results. An 
explanation could be that one or more groups that are not included in the full set are implicitly 
kept constant or are changed less because of our choice of variables for the simplified set. 

For example, the group 2
o

s o

P
uρ

, that Glicksman (1984) ignores even in the full set, changes 

with a factor 2.6 for the full set simulations and with a factor 2.0 for the simplified set 
simulations. At the moment, no firm conclusions can yet be drawn; we are carrying out 
simulations with other choices of operating conditions to investigate this point.  
 



The attractor comparison analysis of the pressure signals leads to more positive results 
about the correctness of the scaling than the analysis of the voidage signals; the cycle time 
distributions do not display much difference between pressure and voidage signals. In 
general, the attractor comparison method applied to relatively short time-series will be more 
reliable, since it uses all available data points, while the determination of the cycle times 
yields only a few values per second (i.e., each second of the signal contains a few cycles). 
However, for both techniques more firm conclusions could be drawn if the simulations were 
run for some minutes instead of the time-series of about half a minute used in this paper. We 
are currently working on this. 
 
The simulated bed movies show that for the low particle Reynolds numbers bubbles just start 
to form in the upper regions of the bed, and that the emulsion phase in the lower part seems 
to be instable and only periodically shows bubble formation and voidage waves. This may 
indicate that the bed is oscillating between two states and thus is not stationary. This may be 
an explanation for the large deviations at the low Reynolds numbers. Probably, longer time-
series are most important at these low gas velocities. 
 
Sanderson (2003) found from experiments that the similitude between scales improved when 
moving towards the centre of the bed and when moving downward in the bed. In our 
simulations, the extent of similitude does not seem to depend on the position in the bed. 
 

Concluding remarks 
 
We compared fluidized beds with a size difference of a factor two using three sets of scaling 
rules: the full, the simplified, and the viscous limit set. The comparison was carried out using 
statistical tests that yield a quantitative measure whether or not similitude between the scales 
was obtained. These tests are applied to pressure and voidage signals obtained at 16 
positions in the bed. The testing of the various positions does not yield an unambiguous 
result. 
 
We found that the simplified set yields the best results, which is surprising since this set of 
scaling rules is less stringent than the full set. Possibly, we implicitly obeyed certain rules that 
are included in none of the three sets when choosing the operating conditions for the 
simplified set simulations. We further found that largest differences are obtained for low 
particle Reynolds numbers. 
 
We are continuing this study in order to reach firmer conclusions. By varying different 
operating conditions, we investigate why the simplified set performs so well in comparison 
with the full set. Moreover, longer simulation runs will be carried out in order to achieve a 
more reliable time-series analysis. 
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