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Inelastic collapse has been observed in a wide range of granular simulations. Very 
little work, however, has been done in the area of detection of inelastic collapse in couette flow 
hard sphere simulations. Only recently has the occurrence of inelastic collapse been 
investigated for such systems.1 That work has shown that the probability of detecting inelastic 
collapse increases with a decrease in the coefficient of restitution. In this paper we show that 
the traditional method for detection of inelastic collapse, based on separation distance, is too 
strict for couette flow systems. We show this by first performing a 3-D simulation of a granular 
system in planar shear where the traditional detection method finds what is considered to be 
inelastic collapse at a current time in the simulation. Unlike in previous work, the simulation is 
then allowed to continue beyond this point, and eventually reaches a steady state where 
inelastic collapse is not detected. Therefore the initial indication of inelastic collapse is a false 
positive, suggesting that the probability of inelastic collapse detection is too high. Furthermore, 
in a different granular system with a lower coefficient of restitution, however, when the 
simulation is allowed to continue beyond the detection of inelastic collapse, a steady state flow 
is not reached. Instead the system ceases to move forward in time. Based on the above 
results, we propose a new detection method for inelastic collapse in driven hard sphere 
simulations in order to avoid false positives. 

                                                 
1 Alam, M., Hrenya, C. M., Phys. Rev. E, 63, 2001, 061308 



I. Background 
 
      Inelastic granular materials exhibit certain phenomena that are not observed in fully 
elastic systems. One example is known as inelastic collapse,1 which is when a group of 
particles undergo an infinite number of collisions in a finite time. Inelastic collapse has been 
observed both in granular flow simulations and in granular flow theory. 

There has been a significant amount of theoretical investigation of inelastic collapse in 
systems of only three particles. For example, Zhou and Kadanoff determined conditions when 
inelastic collapse would occur between three particles where one particle is bouncing between 
the other two.2 Also, Schorghofer and Zhou extended these results to cases where the three 
particles are rotating.3  

Most simulations attempting to study inelastic collapse have been conducted on 
cooling systems where energy is lost through particle-particle collisions. Simulations studying 
inelastic collapse were first done by McNamara and Young using one-dimensional cooling 
systems.4 McNamara and Young then also found inelastic collapse in two-dimensional cooling 
systems.5 To detect inelastic collapse in these cooling systems, McNamara and Young 
suggested a detection criterion for dynamic hard sphere simulations.6 After a binary collision, if 
the pair of particles in the next collision are then separated by a distance, scaled by the particle 
diameter, that is numerically less than machine precision, then inelastic collapse is assumed to 
have occurred. This definition is commonly used as the criteria for detection of inelastic 
collapse in hard sphere simulations. 

In dynamic simulation investigations of inelastic collapse, simulations are run for a 
predetermined number of collisions per particle. If inelastic collapse is detected, the simulation 
typically terminates. McNamara and Young, however, allowed their cooling simulation to 
continue after inelastic collapse was detected as shown in Figure 2 of their paper.6 In this 
figure, the separation distance decreases to the limit of machine precision, indicating inelastic 
collapse. The subsequent collisions are then a series of inaccurately resolved collisions, with 
separation distance at the limit of machine precision. Afterwards, the particles disperse, and 
the separation distance actually increases. 

Simulations, where there is energy input, used to counteract dissipation due to 
particle-particle collisions, are known as driven systems. Most simulation studies of inelastic 
collapse have been conducted in driven systems where energy has been added through 
random particle accelerations. For example, Cornell, Swift, and Bray showed that inelastic 
collapse can occur in one-dimensional versions of these types of driven systems.7 Very little 
has been done in shear flow simulations. One exception being that Alam and Hrenya observed 
inelastic collapse in two-dimensional systems where energy is added using Lees-Edwards 
boundary conditions.1 Furthermore, using the criterion of McNamara and Young, they charted 
how likely inelastic collapse is to occur given the 2D simulation conditions. 

While the separation distance criterion is often used to detect inelastic collapse in a 
hard sphere simulation, the significance of this detection is unclear, as indicated by Alam and 
Hrenya.1 It is also not clear, as suggested by Kadanoff, if the inelastic collapse found in a hard 
sphere simulation is related to natural collapse phenomena such as the decaying bounces of a 
ball.8  



In this work, we examine inelastic collapse in a driven system. We investigate the 
validity of the separation distance as a criterion for inelastic collapse in a driven system. We do 
so by allowing our simulations to proceed in time beyond the point where inelastic collapse is 
detected based on this separation distance criterion. Our results indicate that reliance on just 
the separation distance is not sufficient to determine if inelastic collapse has been found. 
 
II. Simulation Description 
 

The driven system of interest is a three-dimensional cubic shear flow system. The 
system is fully periodic, with Lees-Edwards boundaries used to maintain the shear.1 The hard 
sphere algorithm, which assumes instantaneous binary collisions, is used to simulate the 
particle movement.9 A one parameter coefficient of restitution model of Walton, is used to 
handle the collisions between particles.10 Particles are otherwise assumed to be smooth, 
inelastic spheres of constant density.   
  Monodisperse, hard sphere simulations are conducted for two sets of conditions of 
varying coefficient of restitution, e. The conditions are: (1) e = 0.6, φ = 0.3, (2) e = 0.2, φ =0.3, 
where φ is the solids volume fraction. The number of particles, N, in each simulation is 4000. 
Also, the occurrence of inelastic collapse, based on the criterion of McNamara and Young, will 
be monitored by the simulation.6 If the separation distance, scaled by the particle diameter, is 
less than or equal to 10-16, then the criterion for inelastic collapse will have been met. In our 
results, discussed below, any dimensionless separation distance that is 10-17 is considered to 
be associated with an inelastically collapsed system. The actual value of the separation 
distance may be less than or equal to 10-16, negative, or zero, but it was set to 10-17 to show 
the same value for any separation distance that is numerically imprecise. The reported 
dimensionless simulation time is the actual simulation time multiplied by the shear rate. 
 
III. Results and Discussion 
 

For the first set of conditions e = 0.6, φ = 0.3, Figure 1 shows that inelastic collapse is 
detected before the system reaches steady state and after less than ten collisions per particle. 
As expected, the separation distance in Figure 1 decreases below the limit of numerical 
precision reaching a state of inelastic collapse. Also, unlike most studies of inelastic collapse, 
the simulation, in the present work, is continued after inelastic collapse is observed. Similar to 
what was shown by McNamara and Young,6 a series of inaccurately resolved collisions occur 
until the particles finally separate, and the separation distance increases. The collisions are 
inaccurately resolved because the pre-collision separation distance between the particles is 
numerically too small. Therefore the time until the collision cannot be accurately calculated. 
This will cause the resulting outgoing velocities to be inaccurately calculated, which is why the 
collisions are referred to as inaccurately resolved. 
 



 McNamara and Young stopped their simulation at this point, in part because their 
investigation was for a cooling system.6 Our driven simulations are allowed to continue further 
in time. After a few more collisions, the separation distance again drops below the threshold of 
numerical precision, resulting in more inaccurately resolved collisions. Again, the separation 
distance eventually increases. There is then a time period where the separation distance 
repeatedly bounces between being numerically precise and numerically imprecise. As shown 
by Figure 2, this period of repeatedly dropping below the limit of numerical precision only 
continues temporarily. Eventually, the separation distance increases and then does not again 
decrease down to the limit of numerical precision. Figure 3a shows the overall evolution of the 
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Figure 1: Dimensionless Separation Distance vs. Number of 
Collisions (N = 4000, e = 0.6, φ = 0.3) 

Figure 2: Dimensionless Separation Distance vs. Number of 
Collisions (N = 4000, e = 0.6, φ = 0.3) 

D
im

en
si

on
le

ss
 S

ep
ar

at
io

n 
D

is
ta

nc
e 

240000 260000 280000 300000 320000 

Number of Collisions 



simulation time with the number of collisions and indicates that the simulation time increases at 
a constant slope through most of the simulation. Based on the number of collisions, the region 
shown in Figures 1 and 2 is highlighted in Figure 3b. Initially, the simulation time grows very 
slowly with the number of collisions. Thus the system in Figure 1 is not at steady state because 
the initial slope in Figure 3b is much smaller than the eventual slope after a larger number of 
collisions. Once the average amount of time per collision attains the constant slope as shown 
in Figure 3a, the simulation is considered to be at steady state. Therefore these results show a 
case where inelastic collapse is initially “detected” using the separation distance criterion. 
However, when the simulation is then allowed to proceed beyond that point in time, the 
system, through a series of inaccurately resolved collisions, eventually reaches steady state. 

 

For the low coefficient of restitution case, e = 0.2, φ = 0.3, inelastic collapse is also 
observed, using the current detection method, as shown in Figure 4. As with the previous 
case, the simulation is allowed to continue in time after inelastic collapse is detected. Unlike 
the previous case, however, there is not an eventual increase in time per collision. Instead, as 
shown in Figure 5, the system moves forward an amount of time that is less than machine 
precision, and is essentially zero. Once the transition occurs, all of the repeating collisions are 
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Figure 3: Dimensionless Simulation Times vs. Number of Collisions (N = 4000, e 
= 0.6, φ = 0.3) (a) Entire Simulation (b) Initial Part of Simulation 
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Figure 4: Dimensionless Separation Distance vs. 
Number of Collisions (N = 4000, e = 0.2, φ = 0.3) 



separated by a distance less than machine precision. Eventually there is only once repeating 
collision. Figure 6 shows the change in separation distance behavior once the system stops 
moving forward in time. We consider this to be a “truly” collapsed state. 

 
Given the above results, it is necessary to distinguish between the two methods of 

inelastic collapse detection, especially in a driven system. In the e = 0.6 case, using the 
traditional detection method, based on detection of very small dimensionless separation 
distances, inelastic collapse appears very quickly during the course of the simulation. 
However, since the simulation is allowed to continue in time, it eventually exits this collapsed 
state as a result of a significant number of inaccurately resolved collisions. It is likely that there 
is enough energy being added to the system such that the “very close” particles eventually 
come apart. Furthermore, it is possible (although highly unlikely), that inelastic collapse, using 
this traditional detection method, could be detected for elastic particles. This is because this 
detection criterion only examines the separation distance between two particles that are about 
to collide. Clearly in the case of a three particle collision, where their centers form an 
equilateral triangle, inelastic collapse would be detected even though the three particles would 
eventually move apart assuming that the simulation was allowed to continue. 

The present criterion does, however, ensure that no collision will be resolved 
inaccurately. Yet, as discussed previously by McNamara and Young,6 it is unclear as to what 
effect a series of inaccurately resolved collisions has on the overall simulation results (for a 
cooling system). It is possible that the effect could be negligible because these inaccurately 
resolved collisions typically do not dissipate a lot of energy. For a driven system, issues of 
energy dissipation are not as significant because energy is being added to the system. 
Furthermore, for the e = 0.6 case discussed above, inelastic collapse is detected only before 
the system reached steady state. Therefore the effects of inaccurately resolved collisions do 
not directly influence the overall steady state results of the simulation for this case.  

Clearly our results show that inelastic collapse detected by the traditional detection 
method does not guarantee the identification of a “truly” collapsed state. We propose a new 
detection method that examines both the separation distance and the simulation time. If there 
is an observed separation distance that is less than machine precision, unlike the previous 
method, the simulation should be allowed to continue. A “truly” collapsed state is then detected 
with this improved method if the particle pairs repeat for a significant amount of collisions, 

Figure 5: Dimensionless Simulation Time vs. Number of 
Collisions (N = 4000, e = 0.2, φ = 0.3)
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there is no change in separation distance, and the simulation time does not increase (at the 
level of machine precision) with increasing number of collisions. As with the traditional method, 
the probability of inelastic collapse eventually occurring will depend on e, φ, and N.  
 

IV. Conclusions 
 

In this paper, we put forth an improved method for detection of inelastic collapse 
based on simulation time and tracking the particles involved in each collision as well as particle 
separation distance. The traditional detection method based on particle separation distance is 
unable to distinguish between particle systems which are in a truly collapsed state versus 
systems which may only be "temporarily" in a collapsed state. The more comprehensive 
detection method put forth here involves continuing to integrate forward in time systems which 
initially show inelastic collapse based on separation distance. This continued integration shows 
that systems, which for a period in time exhibit a series of inaccurately resolved collisions, may 
move to a new timeline, or effectively a new set of initial conditions, for which inelastic collapse 
based on separation distance no longer occurs. With this new detection method, the inability of 
a system to move to a new timeline indicates a truly collapsed state. 
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Figure 6: Dimensionless Separation Distance vs. Number 
of Collisions (N = 4000, e = 0.2, φ = 0.3) 
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