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Abstract 
 Fluent’s computational fluid dynamics environment has been enhanced 
with a population balance capability that operates in conjunction with its 
multiphase calculations to predict the particle size distribution within the flow field.  
The population balance is solved by one of the following methods; discrete 
method, standard method of moments, quadrature method of moments (QMOM).  
Fluent’s prediction capabilities are tested by using a 2-dimensional analogy of a 
constant stirred tank reactor with a fluid flow compartment that mixes the fluid 
quickly and efficiently using wall movements and has a feed stream and a 
product stream.  The results of these Fluent simulations using QMOM population 
balance solver are compared to steady state analytical solutions for the 
population balance in a stirred tank where 1) nucleation, 2) growth, 3) 
aggregation, 4) breakage, take place separately and 5) combined nucleation and 
growth and combined nucleation, growth and aggregation takes place.  The 
results of these comparisons show that the moments of the population balance 
are accurately predicted for nucleation, growth, aggregation and breakage when 
the flow field is turbulent.  With laminar flow the mixing is not ideal and as a result 
the steady state well mixed solutions are not accurately simulated. 

1. Introduction 
 
The population balance equation (PBE) is a statement of continuity for particulate 
systems.  Cases in which a population balance could apply include crystallization, 
precipitation, bubble columns, gas sparging, sprays, fluidized bed polymerization, 
granulation, liquid-liquid dispersions, air classifiers, hydrocyclones, particle 
classifiers, and aerosol flows. In the case of a continuous mixed-suspension, 
mixed-product removal (CMSMPR) crystallizer in which aggregation, breakage 
and growth are occurring the PBE is given by Randolph and Larson (1) as 
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with the boundary condition, n(0)=no.  In the above equation n(v) is the number-
based population of particles in the tank which is a function of the particle volume, 
v.  The subscript “in” refers to the inlet population.  G(v) is the volume dependent 
growth rate and b(v) is the volume dependent birth rate and d(v) is the volume 
dependent death rate.  In the case of aggregation the birth and death rate terms 
are given by Hulburt and Katz (2) as 
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where the aggregation rate constant, β(v,w), is a measure of the frequency of 
collision of particles of size v with those of size w.  In the case of breakage, the 
birth and death rate terms are given by Prasher (3) as 
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where S(v) is the breakage rate constant that is a function of particle size, v, 
ρ(v,w) is the daughter distribution function defined as the probability that a 
fragment of a particle of size w will appear at size v. 
 
It is often useful to know the moments of n(v) because of physical significance.  
The kth volume moment is defined by 
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vmo and vm1 represent the total number and total volume of particles in the 
system.  The PBE can be transformed into a series of moment equations by 
multiplying equation 1 by vk and integrating with respect to v from zero to infinity.  
These moment equations are used in place of the PBE to approximate the 
particle size distribution, see Randolph and Larson (1).  QMOM was first 
proposed by McGraw (4) and further developed by Marchisio, et. al. (5).  With the 
QMOM PBE solver in Fluent, a small number of moments, N, (typically 6) are 
used.  Moments are approximated by a quadrature approximation that uses N/2 
weights, Wi, and N/2 sizes, Li, as follows: 
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Upon substitution of these weights and sizes into the N moment equations, we 
have a series of equations that just equals the number of unknowns, N, allowing 
for the solution of the system of equations that constitutes an approximation of 
the PBE.  From the moments the particle size distribution can be reconstituted 
using a moment transformation (1). For more details of this numerical method 
see the Fluent User’s Guide - Crystallization Sample Case and Data Files.   



 

 
The moments used in QMOM are length based and are different from those 
described by equation 4 which are volume based.  There is a correspondence 
between length based moments and volume based moments. This 
correspondence is given in Table I, where Ka means surface area coefficient, 
and Kv means volume coefficient.  Noting this correspondence any length based 
moment calculated by Fluent can be compared with the volume based moment 
predicted from equation 4 and an analytical solution to the population balance. 
 
Table 1 Correspondence between length based and volume based moments 
Property Volume Based Moment Length Based Moment 
Number of Particles vm0 Lm0 
Surface Area of Particles  vm2/3 Ka*Lm2 
Volume of Particles vm1 Kv*Lm3 
 
In this paper a 2-D analogue is used to simulate a stirred tank (CMSMPR) within 
Fluent.  These simulations are compared to steady-state analytical solutions to 
the PBE for 1) nucleation, 2) growth, 3) aggregation, 4) breakage, take place 
separately and 5) combined nucleation, growth and aggregation takes place.  
The analytical solutions for n(v) are converted to the length based moments 0 to 
5 and compared directly to the moments predicted by Fluent. 
 

2. Setup of 2-D Stirred Tank in Fluent 
 
To approximate a well mixed stirred tank with a simplified computational 
geometry we have used a 2-D approximation of a stirred tank.  This allows 
testing of the PBE within Fluent simply without solving a complicated 3-D flow 
problem with rotating grids typical of a stirred tank.  The 2-D grid developed is 
given in Figure 1.  It is a square box 0.1 m on edge with 400 elements with an 
inlet and an outlet both with a 0.02 m opening.  For a constant stirred tank, the 
inlet flow rate is equal to the outlet allowing the mean residence time to be 
calculated from the inlet flow rate (velocity times inlet area) and the “volume” (box 
area times unit depth) of the box.  To simulate the agitation in the tank the top 
and bottom walls are assumed to have a y-velocity of +101 and +100 m/s both in 
the direction of the outlet for the turbulent case and -8 and +8 m/s in the laminar 
case. The velocity vector field for the laminar case is shown in Figure 2 and that 
for the turbulent case is shown in Figure 3.  The convective flux of the tracer at 
outlet is collected from this simulation and plotted against time (6), then converted 
to residence time distribution using: 
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The RTD determined in is way is normalized since the feed tracer concentration was 1.0. 
 



 

 
Figure 1 Grid for 2-D simulation of well mixed stirred tank.   
 

 
Figure 2 Velocity distribution for laminar flow Fluent simulation. 
 

 
Figure 3 Velocity distribution for turbulent flow Fluent simulation. 
 
To test the accuracy of the well mixed assumption, the residence time distribution 
was predicted using a unit tracer concentration, a second phase with the 
properties of water, in the tank that is allowed to displace a first water phase as 
time progresses.   The outlet concentration predicted by the simulation is shown 
in Figure 4 for the laminar flow and the turbulent flow simulations as well as the 
ideal curve.  Here we see that the laminar flow curve has an initial peak above 
the ideal curve and a tail that is below the ideal curve.  The turbulent simulation is 
nearly identical to the ideal curve.    
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Figure 4 Comparison of Residence Time Distributions for Laminar (black line) 
and Turbulent (red dots) flow simulations with Ideal well mixed tank (green line). 
 
The mean and standard deviation of the various residence time distributions 
were determined giving the following comparison.   

 tmean/(V/Q) Error 
% Std.Deviation/tmean

Error 
% 

Turbulence 
model 1.001 0.1 1.008 0.8 

Laminar 
model 0.999 0.1 1.058 5.8 

Ideal values for both the mean time, tmean, divided by the ratio of tank volume, V, 
to volumetric flow rate, Q and the standard deviation divided by the mean time 
should be 1.0.  The laminar flow model is clearly worse than the turbulent flow 
model in approximating an idealized well mixed tank. 
 

3. Numerical Case Studies 
 
Numerical cases, discussed below, have been developed to test the PBE 
capabilities of Fluent.  First of all Fluent is used to solve the velocity field to a 
convergence of 10-5 for either the laminar or turbulent flow.  Then the a 
multiphase calculation is initiated with the PBE solved by QMOM using 6 length 
based moments 0 to 5 (or more precisely 3 lengths and 3 weights) with the 
velocity field fixed.  The convergence criterion is lowered to 10-7 (or lower) for the 
multiphase PBE calculation with a relaxation parameter of 0.9 except when 
otherwise stated. 
 
Case 1-Growth: The analytical solution to the PBE, equation [1], for growth 
alone was obtained by setting the growth rate to a constant (G(v)=G0), the 



 

aggregation kernel, β(v,w), and the specific rate of breakage, S(v), to zero.  For 
this case the feed particle size distribution is  
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and the boundary condition is set to zero. 
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Although not physically realistic, a constant growth rate results in a PBE solution 
is 
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where τ is the mean residence time.  Simulations are performed with No and vo 
set equal to unity.  Please note that this solution is singular when vo= τ  Go.   
 
Analytical expressions (7) for the zeroth, first and second volume based moments 
are  
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These and other moment equations are used for comparison with Fluent 
simulations.  Because in the analytical solution, the growth term is expressed in 
terms of the particle volume and in FLUENT it needs to be expressed in terms of 
particle length, x: 
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Where Kv means volume coefficient, for  
So, in FLUENT, we use  
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For the Fluent simulation the growth rate of 1 µm/s and the mean residence time 
of 100s was used with the initial particle size distribution in the tank given by the 
feed distribution, the simulation took 1600 iterations to achieve a convergence 
criterion of 10-9 for the turbulent flow simulation with a relaxation factor of 1.0 and 
4000 iterations to achieve a convergence criterion of 10-9 for the laminar flow 
simulation. The results of these simulations are given in Table 2 for both the 
laminar and turbulent flow simulations with a relaxation factor of 0.9.  The 
turbulent flow case will not converge with a relaxation factor of 1.0.  The results 
of the turbulent flow simulation are accurate to only 0.2% with this convergence 
criterion.  The results of the laminar flow simulation is less accurate – a 3.7% 
error with the same convergence criterion.  Because the laminar flow simulation 
does not correspond to well-mixed conditions, it does not accurately simulate the 
analytical solution. 
 
Table 2 Moment comparison of PBE for Fluent Simulations with Analytical 
Solution for Growth 

  Turbulence Laminar 
 Inlet Outlet 

(Analytical) 
Outlet 
(Fluent) 

Error 
% 

Outlet 
(Fluent) 

Error 
% 

Lm0 1 1 1 0        1 0 
Lm1 1.108 5.183 5.1906333 0.147 5.0913844 1.768 
Lm2 1.39 30.227 30.251846 0.082 29.813738 1.367 
Lm3 1.91 192.896 193.02859 0.069 192.86899 0.014 
Lm4 2.821 1.323e3 1325.7223 0.206 1347.62 1.861 
Lm5 4.423 9.626e3 9641.8662 0.165 9985.3242 3.733 

 
Case 2-Nucleation and Growth:  The analytical solution to the PBE, equation 
[1], for nucleation and growth was obtained by setting the growth rate to a 
constant (G(v)=G0), the aggregation kernel, β(v,w), and the specific rate of 
breakage, S(v), to zero.  For this case the feed particle size distribution is set to 
zero, nin(v)=0 and the boundary condition is 
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where no is the number density of particles with a zero size.  The nucleation rate 
is given by the product of Go and no.  The analytical solution for this case is given 
by (1) 
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This analytical solution is converted to length based moments for comparison 
with the Fluent simulation.  The Fluent simulation was run with GL-0=0.01 mm/s 
noting the above conversion in equations 11 to14 and the nucleation rate is 
1#/m3/s, the mean residence time, τ, of 100s with no particles in the feed.  The 
results of this comparison are given in Table 3.  Here we see that the laminar 
flow simulation is in error by as much as ~25% while the turbulent flow simulation 
is accurate to ~0.01%.   
 
Table 3 Moment comparison of PBE for Fluent Simulations with Analytical 
Solution for Nucleation and Growth. 
 

FLUENT FLUENT  Analytical 
Solution Laminar Error% Turbulence Error% 

Lm0 100 99.98 0.02 99.987236 0.013 
Lm1 100 105.68 5.68 99.98867 0.011 
Lm2 200 223.2 11.6 199.97765 0.011 
Lm3 600 702.3 17.5 599.93298 0.012 
Lm4 2400 2917.2 21.55 2399.7319 0.011 
Lm5 12000 14982 24.85 11998.659 0.011 

 
Case 3-Aggregation: The analytical solution to the PBE, equation [1], for 
aggregation alone was obtained by setting the growth rate to zero (G(v)=0), the 
aggregation kernel to a constant, β(v,w)= βo, and the specific rate of breakage, 
S(v), to zero.  For this case the feed particle size distribution is set to an 
exponential distribution given by equation 7.   
 
The analytical solution for this case is given by (8) 
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where Io(z) and I1(z) are modified Bessel Functions of the first kind of zero and 
first orders.  This analytical solution is converted to length based moments for 
comparison with the Fluent simulation.  Analytical expressions (9) for the zeroth, 
first and second volume based moments are  
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The Fluent simulation was run for the conditions of βo=1, N0=100, v0=100, and a 
mean residence time of 100s.  The turbulent PBE simulation ran for 5000 
iterations to get to a residue of 10-7.  The results of this comparison are given in 
Table 4 for the turbulent flow case only.  Here we see that the turbulent flow 
simulation is accurate to ~0.4% and correctly predicts that the 3rd length based 
moment is correctly predicted to not change during passage through the reactor. 
 
Table 4 Moment Comparison of PBE for Fluent Turbulent Simulations with 
Analytical Solution for Aggregation Alone. 
 

 Inlet Outlet 
(Analytical) 

Outlet 
(Fluent) 

Error 
% 

Lm0 1  0.132 0.1319 0.076 
Lm1 1.108  0.225 0.2256 0.267 
Lm2 1.39  0.547 0.5490 0.366 
Lm3 1.91  1.91 1.91 0 
Lm4 2.821  9.073 9.093 0.22 
Lm5 4.423  53.797 53.88 0.154 

 
 
Case 4-Breakage: The analytical solution to the PBE, equation [1], for breakage 
alone was obtained by setting the growth rate to zero (G(v)=0), the aggregation 
kernel to zero, β(v,w)= 0, the specific rate of breakage to S(v)=v and the 
daughter distribution function is set to ρ(v,w)=2/w.  For this case the feed particle 
size distribution is set to an exponential distribution given by equation 7.  
 
The analytical solution for the case is given by (7): 
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This analytical solution is converted to length based moments for comparison 
with the Fluent simulation.   
 
Analytical expressions of the zeroth and first volume moments can be derived to 
give 
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which indicate that the volume of particles is conserved.  These moments are 
converted to length based moments for direct comparison with the QMOM Fluent 
simulation. 



 

 
 
The Fluent simulation was run with constants N0 and v0 were set to unity, the 
mean residence time, τ, of 100s. Comparison the Fluent simulation to the 
analytical solution for the turbulent flow simulation is given in Table 5.  Using a 
convergence criterion of 10-10 required 22000 iterations using a relaxation factor 
of 0.9. The results for Lm3 are accurately predicted indicating that mass is 
conserved, and the error for other moments are within 4.9%.  This indicates that 
Fluent QMOM does accurately simulate breakage. 
 
Table 5 Moments Comparison of FLUENT Turbulent Simulation to the Analytical 
solution for Breakage only 
 

 Inlet Outlet 
(Analytical) 

Outlet 
(Fluent) 

Error 
% 

Lm0 1 101 96.074959 4.876 
Lm1 1.108 21.758 21.476355 1.294 
Lm2 1.39 5.807 5.7282887 1.355 
Lm3 1.91 1.91 1.9100003 1.6E-5 
Lm4 2.821 0.789 0.79708576 1.025 
Lm5 4.423 0.422 0.42062327 0.326 

 
 
Case 5-Nucleation, Growth and Aggregation Combined:  The analytical 
solution to the PBE, equation [1], for nucleation, growth and aggregation together 
was obtained by setting the growth rate to a constant (G(v)=G0), the aggregation 
kernel to a constant, β(v,w)= βo, and the specific rate of breakage, S(v), to zero.  
For this case the feed particle size distribution is set to zero, nin(v)=0 and the 
boundary condition is 
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where no is the number density of particles with zero size.  The nucleation rate is 
given by the product of Go and no.  The analytical solution for this case is given 
by (10) 
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where I1(z) is the modified Bessel Function of the first kind of first order.   
Analytical expressions of the zeroth, first and second volume moments can be 
derived to give 
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This analytical solution and the above moment equations are converted to length 
based moments for comparison with the Fluent simulation.  The Fluent simulation 
was run with Gv-0=0.01 mm3/s and the nucleation rate is 1#/m3/s, the mean 
residence time, τ, of 100s with no particles in the feed.  The solution took 3000 
iterations to reach a convergence criterion of 10-7.  The results of this comparison 
are given in Table 6.  The largest error is 1.4% in the length moment, Lm1. 
 
Table 6 Moments Comparison of FLUENT Turbulent Simulation to the Analytical 
Solution to the PBE for Nucleation, Growth and Aggregation 

 Outlet 
(Analytical) 

Outlet 
(Fluent) 

Error 
% 

Lm0 0.358 0.3582 0.056 
Lm1 0.346 0.3508 1.387 
Lm2 0.434 0.4367 0.622 
Lm3 0.684 0.6845 0.073 
Lm4 1.305 1.3178 0.981 
Lm5 2.904 2.9091 0.176 

 

4. Conclusions 
 
The 2-D model of a well-mixed stirred tank is a simple geometry with a small 
number of grids can be shown to be an accurate model if the flow is turbulent.  
Using this turbulent model of a well-mixed tank, a two phase model with a PBE 
for the second, solid phase has been developed and solved with the QMOM 
option in Fluent.  This model has been tested using numerical cases where 
growth, aggregation, breakage and the combined cases of nucleation and growth 
and nucleation growth and aggregation.  These Fluent simulations are compared 
with analytical solutions to the PBE for a constant well-mixed tank for these 
cases.  The QMOM option in Fluent accurately predicts each of these cases.  To 
obtain less than 1% accuracy for these cases, different convergence criterion are 
necessary.  Depending upon the case, a convergence criterion between 10-7 to 
10-14is required. 
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