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Abstract

When a fluid flows inside a curved tube, the centrifugal forces due to the curvature are
balanced by the pressure gradient across the tube. These centrifugal forces induce secondary
flows, known as Dean vortices, that have proven to be very useful in many engineering applica-
tions.

Recently, the use of Dean vortices in membrane filtration has become one of the most
effective methods for reducing the concentration polarization. Various configurations of modules
have been developed for this purpose; it has also been confirmed experimentally that using
curved, rather than straight, membrane tube geometries allows for increasing the mass flux and
leads to improved membrane efficiency. Until now, both theoretical and computational works on
the effect of curvature on membrane system performance have been limited to simplified (1D or
2D), mainly single-phase, flow models inside the membrane tubes. Since the actual industrial
filtration operations involve particle/liquid slurries, it is important to understand the effect of
geometry and flow conditions on particle distribution in curved-geometry tubes and channels.

The objective of this paper is to present the results of theoretical and numerical analy-
ses of dilute liquid/particle two-phase flows in straight tube and U-bend membrane systems that
are used for micro- and nano-filtrations. The numerical analysis is based on CFD simulations
performed using a state of the art two-phase flow model and a next-generation multi-phase flow
computer code, NPHASE. The main part of this paper is concerned with rigorous modeling of
shear-induced diffusion force due to liquid cross-flow. The effect of liquid flow across membrane
surface on particle distribution is also studied in detail.

1.  Introduction

Cross-flow filtration is one of the most popular modes of industrial operations. Several
industrial fluids comprise of particle-liquid suspensions, so it is important to separate the solute,
which is mostly particulate matter, from the solution. Though cross-flow filtration is a widely
used mode, this process has not been well studied in terms of particle/liquid fluid mechanics.
Needless to say, detailed two-phase particle-liquid studies are important in order to understand
the cross-flow filtration behavior.

In cross-flow filtration, as compared to the flow inside a solid tube, particle trajectories
can be affected by the suction through the wall. For dilute concentrated solutions, the back-
transport mechanisms (inertial lift, Brownian diffusion, shear-induced diffusion, etc.) could play
a significant role in moving particles away from the wall. Due to the shear from the tangential
flowing liquid, the cake layer does not grow indefinitely, as some particulate matter gets swept
by the suspension towards the filter exit. This phenomenon is known as shear-induced diffu-
sion. 

For smaller particles, Brownian diffusion and shear-induced diffusion are the most dom-
inant back-transport mechanisms. It was shown before (for, example, see Belfort et. al. [1]) that
for micro-particles (the diameters of which are of the order of a few microns), the permeate flux



attained by particles due to shear-induced diffusion is much higher than Brownian diffusion.
Hence, one can consider only the shear-induced diffusion to determine the particle concentra-
tion profile for such particles, without causing a significant error. 

In this paper, a novel way is presented to mechanistically model the shear-induced dif-
fusion force that affects the near-wall particle concentration profile in permeable membrane
modules, and to account for this force in full 3-D simulations of particulate flow in curved mem-
brane tubes.

2.  Multidimensional CFD Model of Liquid/Particle Flows

The present analysis uses a multidimensional model of dilute flows of particles dis-
persed in a continuous liquid field. The governing mass and momentum conservation equations
(the energy equation has a negligible effect on the flow and can be ignored) for each, the con-
tinuous liquid and the dispersed particles, are determined with respect to a common physical
and computational domain, and are given by [2,3]
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where  is the local volumetric concentration of particles,  and  are the interfacial

drag and non-drag forces, respectively, per unit volume of the fluid. In the present study we
have incorporated the effect of shear-induced diffusion force as a non-drag force.

3.  Mechanistic Model of Shear-Induced Diffusion Force

In order to properly incorporate the effect of shear-induced diffusion in the two-phase
particle/liquid momentum balance equation, this phenomenon should be considered in terms of
an interfacial force. In this section, a novel approach is presented to model the shear-induced
diffusion effect as a non-drag force which can be used in the phasic momentum conservation
equation.

3.1  Diffusion-Induced Particle Velocity

In cross-flow membrane systems, solvent flows out of the membrane in the tangential
direction. Particles move towards the wall with the outgoing liquid, but cannot penetrate the
porous membrane wall (have a 100% retention). This, in turn, results in an increased particle
concentration at the wall. The backtransport mechanism pushes the solute (particles) to the
bulk flow (see Figure. 1).

FIGURE 1. Schematic representation of membrane transport

The mass flux of particles moving away from the wall can be expressed as [4]:
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where  is the particle density,  is the particle velocity away from the wall,  is the particle

volume fraction, and  [m2/s] is the total diffusion coefficient which accounts for the combined
effects of various diffusion phenomena (Brownian diffusion, shear-induced diffusion, etc.).

In general, a diffusion coefficient, , can be written in the form

(6)

where  is the particle-volume-fraction-independent part, and  is a dimensionless dif-

fusion multiplier which depends only on particle volume fraction, .

Eq.(5) can be rewritten as

(7)

where  is the superficial velocity of the particles back-transported to the bulk liquid.

From Eq.(7), it is clear that diffusion-induced particle velocity can be represented as

(8)

The direction of the velocity, , is always away from the wall or towards the decreasing

concentration gradient; hence, this velocity has a negative sign.

3.2  Force Due to Shear-Induced Diffusion

In order to include the backtransport mechanism in the phasic momentum conservation
equation, this phenomenon must be represented in terms of a force. The concept of mobility [5]
can be used for this purpose.

Mobility is defined as the velocity attained by particles when a unit driving force is
applied on them. Thus, we write

(9)

where  is the force acting on particles,  is the average velocity attained by particles (m/s),

and  =  (s/kg) is the lumped particle mobility.
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In general, particle mobility can be attained by various back-transport mechanisms,
such as Brownian diffusion, shear-induced diffusion, etc. The total mobility can be defined as
the sum of mobility components attained by the various mechanisms

(10)

or

(11)

where  = , is the mobility attained due to Brownian diffusion and  = , is the mobility

attained due to shear-induced diffusion.

As mentioned earlier, for small micro-particles, the effect of shear induced diffusion is
much higher than that of the Brownian diffusion. Hence, in the following sections we take
account of the shear induced diffusion only.

The inverse of particle mobility due to shear-induced diffusion can be described as

(12)

where  is the shear-induced diffusion coefficient,  is the magnitude of local shear stress,

and  is the volume of particle.

Now, using Eq.(9), the force due to shear-induced diffusion becomes

(13)

where  is the average velocity attained by a particle as a result of the shear induced diffu-

sion force.    

The term, , in Eqs.(12) and (13) is the shear-induced dispersion coefficient. As it is

shown later in this section,  can be uniquely determined as function of the particle volume

fraction, .
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A summary of the existing models for the shear-induced diffusion coefficient is given in
Table 1.

It is important to note that Eq.(13) determines the force is acting on a single particle. In
order to represent the average force acting on all particles per unit volume, , we multiply

Eq.(13) by particle number density, 

(14)

Interestingly, the product, , is the total volume occupied by particles per unit vol-

ume of the mixture, which is the definition of particle volume fraction

(15)

Now, Eq.(14) can be further simplified by utilizing the particle velocity definition given by
Eq.(8). Thus, we write

(16)

E.(16) can be simplified to the following form

(17)

Eq.(17), can be described as the force per unit volume acting on the particles as a
result of shear-induced diffusion. This force acts away from the wall and towards the decreasing
concentration gradient; hence, it is represented by a negative sign. It is interesting to note that
the final form of the shear-induced diffusion force is proportional to the magnitude of shear

stress, , and to the particle concentration gradient, .
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By taking advantage of Davis & Leighton [8] results, the shear-induced dispersion coef-
ficient we can determined as a function of particle volume fraction

(18)

4.  Results and Discussion

4.1  Three-Dimensional (3D) CFD Predictions of Particle Distribution in Permeable 
Straight Tube

This section shows the results of calculations performed for a full 3D straight tube
geometry using the NPHASE solver. Physical properties of the particle/liquid system under con-
sideration are given in Table 2. Major geometrical and flow parameters are given in Table 3. 

The shear-induced diffusion force was calculated at every location using the model
given by Eq.(17), where the shear-induced diffusion coefficient was taken as a function of parti-
cle volume fraction, according to Eq.(18). The local shear stress magnitude, , was calculated

from the liquid shear stress tensor, , determined with respect to the liquid molecular viscosity,

as

(19)

TABLE 2. Physical properties of particle-liquid system

Property Liquid (water) Particles (silica)

Density ( , kg/m3) 1000.0 2200.0

Viscosity ( , Pa-sec) 0.001 ---

Characteristic Diameter (D, m) --- 10-6

Volumetric concentration ( ) 0.9 0.1

TABLE 3. Geometry definitions and flow parameters used in the calculations

Case

Tube 
Radius

(Rt, mm)

Curvature 
Radius

(Rc, mm)

Average 
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velocity
(m/s)
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(vw, m/s) Re De

Straight Tube 1.6 - 0.1 2 x 10-6 320 0

U-bend 1.6 10 0.1 2 x 10-6 320 128
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The particle volume fraction profiles, predicted at near wall locations, are shown in Fig-
ure 2 for various axial locations. The minor increase in particle concentration in the main flow
direction is due to the effect of the assumed uniform suction along the porous wall.

FIGURE 2. NPHASE predictions of the particle volume fraction distribution at various axial
locations in the 3D straight tube given in Table 3.

The shear-induced diffusion coefficient was also calculated analytically, by balancing
the drag and shear-induced diffusion force on a particle. For analytical calculations relative
velocities predicted from the NPHASE solver at the  location of the straight tube, are
used. Figure 3, shows the comparison for shear-induced dispersion coefficient, , between

the CFD and the analytical calculation directly. A good agreement is predicted between both
results. In the present calculations, the shear-induced diffusion coefficient varies dramatically
with the particle volume fraction. Hence, a similar trend is observed for the shear-induced diffu-
sion force. This effect can be seen in the particle volume fraction profiles.

4.2  Particle Distribution in U-bend

The model presented in Section 3 has been also used to make predictions for a full 3D
U-bend geometry, as described in Table 3. Physical properties of the particle/liquid system are

given in Table 2. A constant, radially outward, suction velocity, , was assigned

at the curved section of the U-bend. The shear-induced diffusion force was applied using
Eq.(17).
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FIGURE 3. Radial distribution of the shear-induced dispersion coefficient across the
straight tube given in Table 3; a comparison between the analytical calculation
and the 3-D NPHASE predictions at the axial location of L/D = 60.

Figure 4 shows the azimuthal distribution of the near wall volume fraction at various
axial locations in the U-bend. The volume fraction distribution in the U-bend case without suc-
tion, and for the straight tube case with suction, are also shown in Figure 4. The importance of
secondary flow on particle distribution can be easily seen. It is observed that if no cross-flow
was assigned to the curved wall, then a nearly uniform particle distribution was obtained along
the curved U-bend tube. On the other hand, for the straight tube case with cross-flow, a uniform
particle concentration has been obtained at all locations along the circumference of the wall;
however, the volume fraction value in this case is much higher than the average bulk volume
fraction. This effect is due to the cross-flow from the wall. Specifically, particles experience drag
towards the wall due to the suction-induced liquid flow into, and across, the porous wall. At the
wall, the drag force balances the shear-induced diffusion force, which results in an equilibrium
concentration at the wall. This concentration is much higher than the average bulk concentra-
tion.

The volume fraction distribution for the straight tube shown in Figure 4 was obtained at
the same axial location, equivalent to the 90o section (axially) of the U-bend. The most interest-
ing result shown in Figure 4 is the particle distribution prediction for the U-bend with cross-flow.
It is observed that the particle concentration at the wall is much lower that the concentration
obtained for the straight tube case. Also, unlike for the straight tube, the particle concentration
distribution is highly non-uniform along the circumference of the tube at various axial locations
along the curved section of the U-bend. It is interesting to notice that the maximum particle con-
centration is predicted at the inner bend, and the minimum particle concentration is predicted at
the outer bend. The reason for this is the variable vortex strength at different circumferential
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locations. Plots of the magnitude of the corresponding near-wall vorticity can be found in Tiwari
at el. [9]. It is evident that the highest strength is observed at the outer bend, which results in the
lowest particle concentration at that location. The opposite is true for the inner bend.

FIGURE 4. Circumferential particle concentration distribution at various axial locations in
the U-bend case with cross-flow. The results are compared with those for a
straight tube with cross-flow and for a U-bend case without cross flow.

Another important observation from Figure 4 is that the particle concentration in the U-
bend for the case with cross-flow is always lower than for the straight tube case with cross-flow,
and it is only slightly higher than that for the solid straight tube (i.e., without suction) for most cir-
cumferential distance around the tube wall. This effect is due to the presence of Dean vortices
in the U-bend case, which helps to move particles away from the near-wall region.

5.  Conclusions

Dilute liquid/particle two-phase flows in a permeable straight tubes and U-bends have
been analyzed. The major aspects of the results are:

• A novel approach is proposed to model the shear-induced diffusion effect in 3-D curved 
membrane tubes that experience cross-flow at the porous wall

• The proposed shear-induced diffusion force model has been thoroughly tested and validated 
against analytical calculations, showing the consistency and numerical accuracy of the 
results
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• Particle distributions in full 3D straight and U-bend permeable membrane tubes have been 
studied using a new model of the shear-induced diffusion force. It has been observed that 
Dean vortices play a significant role in particle distribution, and, in particular, dramatically mit-
igate particle buildup at the porous wall

References

[1] Belfort, G., Davis, R. and Zydney, A., The behavior of suspensions and macromolecular 
solutions in crossflow microfiltration, A review for the North American Membrane Society’s 
Annual Reviews and for the J. Membrane Sci., 96, 1-58 (1994).

[2] Drew, D. A. and Passman, S. L., Theory of multicomponent fluids, Springer-Verlag New 
York Inc (1999).

[3] Podowski, M.Z., Modeling of Two-Phase Flow and Heat Transfer; Remarks on Recent 
Advancements and Future Needs, Proc. 3rd Int. Conf. on Transport Phenomena in Mul-
tiphase Systems, Kielce, Poland (2002).

[4] Blatt, W. F., David, A., Michaels, A. S. and Nelsen, L., Solute polarization and cake forma-
tion in membrane ultrafiltration: causes, consequences, and control techniques, In Mem-
brane Science and Technology (Edited by L. Flinn), Plenum Press, New York, 47-97 
(1970).

[5] Bird, A. B., Stewart, W. E. and Lightfoot, E. N., Transport Phenomena, John Wiley & Sons 
Publishers (1994).

[6] Eckstein, E. C., Bailey, P. G. and Shapiro, A. H., Self-diffusion of particles in shear flow of a 
suspension, Jr. Fluid Mech., 79, 191-208 (1977).

[7] Leighton, D. and Acrivos, A., Measurement of shear-induced self diffusion in concentrated 
suspension of spheres, Jr. Fluid Mech., 177, 109-131 (1987).

[8] Davis, R. H. and Leighton, D. T., Shear-induced transport of a particle layer along a porous 
wall, Chem. Engg. Sci., 42 (2), 275-281 (1987).

[9] Tiwari, P., Antal, S. P., Burgoyne, A., Belfort, G. and Podowski, M. Z., Multifield computa-
tional fluid dynamics model of particulate flow in curved circular tubes, Theoret. Comput. 
Fluid Dynamics, 2004 (in print).


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



