
GREENER SOLVENT SELECTION, SOLVENT RECYCLING AND OPTIMAL CONTROL 
FOR PHARMACEUTICAL AND BIO-PROCESSING INDUSTRIES 

 
Saadet Ulas, Urmila M. Diwekar* 
Center for Uncertain Systems: Tools for Optimization and Management 
University of Illinois at Chicago 
Department of Bioengineering 
851 S Morgan St., Chicago, IL, 60607 

ABSTRACT 

This paper proposes the simultaneous integration of environmentally benign solvent 
selection (chemical synthesis), solvent recycling (process synthesis) and optimal control for the 
separation of azeotropic systems using batch distillation. The previous work performed by Kim 
et al. (2004) combines the chemical synthesis and process synthesis under uncertainty. For 
batch distillation, optimal operation is also important due to the unsteady state nature of the 
process and high operating costs. Optimal control allows us to optimize the column operating 
policy by selecting a trajectory for the reflux ratio. However, there are time-dependent 
uncertainties in thermodynamic models of batch distillation due to the assumption of constant 
relative volatility. In this paper, the uncertainties in relative volatility are modeled using Ito 
processes and the stochastic optimal control problem is solved by combined maximum 
principle and non-linear programming (NLP) techniques. Then the previous work of optimal 
solvent selection and recycling is coupled with optimal control. As a real world example for this 
integrated approach, a waste stream containing acetonitrile-water is studied. The optimal 
design parameters obtained by Kim et al. (2004) for this separation are used and the optimal 
control policy is computed first without considering uncertainties by variable transformation 
technique. The deterministic optimal control policy improves the product yield by 4.0% as 
compared to the base case. A higher recovery rate is expected when the uncertainties are 
incorporated into in the model.      

1. Introduction 

Solvents are widely used in bulk chemical, specialty chemical and pharmaceutical 
industries. However, waste solvents released from these industries deteriorate the 
environmental quality and reduce the material economy. In order to recover the solvents from 
waste streams, separation processes are employed. Batch distillation is one of the separation 
processes used for solvent recovery in many chemical industries especially those related to 
the production of high value, low volume specialty chemicals, pharmaceuticals and bio-
chemicals. This process offers great flexibility for small scale production, where there are 
variations in feed stock and product specifications. On the other hand, the unsteady state 
nature of this process creates challenging design and operational problems. 

One of the most difficult problems is to optimally design and operate batch columns for 
the separation of systems showing non-ideal mixture behavior. For many industrially important 
mixtures and some waste solvents, the thermodynamics is complex due to the formation of 
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azeotropes. One way to separate an azeotropic mixture is to use an entrainer to break the 
azeotrope by changing vapor-liquid equilibrium. The question following this is how to select an 
effective separating agent or entrainer (chemical synthesis) which complies with environmental 
regulations and how to synthesize this distillation process for solvent separation and recycling. 
In recent years, researchers have realized the importance of integrating chemical synthesis 
(i.e. environmentally benign solvent (EBS) selection) with process synthesis (i.e. in-process 
solvent (IPS) recycling) to ensure improved economic performance and environmental quality. 
However, this integrated approach poses a big problem of combinatorial explosion of 
alternatives in EBS selection and IPS recycling as well as the difficulties caused by 
thermodynamically complex systems and complex process configurations. In addition, 
uncertainties in the property prediction models in EBS selection and variability in IPS recycling 
results in additional complexities to this integrated approach. Recently, Kim and Diwekar 
(2004) derived an innovative batch campaign using the integrated chemical synthesis and 
process synthesis approach.  

Furthermore, for batch distillation, we should also consider another important factor: 
optimal operation. Due to its unsteady state nature, operation is much more difficult and the 
operating costs are higher for this process. Therefore, optimal operating policies should be 
found for batch distillation. This results in an optimal control problem where an optimal 
trajectory for the control variable is found so as to optimize an index of performance. An 
optimal trajectory would be obtained if the mathematical model accurately captures the 
dynamics of the batch distillation process. However, for many mixtures the thermodynamic 
model is not exact and this results in time-dependent uncertainties. Rico-Ramirez et al. (2003) 
and Ulas et al. (2003) modeled these time-dependent uncertainties by making use of Real 
Options Theory based on Ito’s Lemma (Ito, 1951) and derived the necessary equations for 
solving stochastic optimal control problems in batch distillation. The usefulness of this 
approach was demonstrated by case studies with known thermodynamic systems where the 
optimal reflux profiles obtained resulted in better process yield and product purity. 

The aim of this work is to combine the previous work of computer-aided environmentally 
benign solvent selection and in-process recycling with optimal control in one platform 
considering the uncertainties at each stage. This complete integrated approach enables us to 
optimally design and operate batch distillation processes for azeotropic systems under 
uncertainty.  

2. Integrated Framework for Waste Solvent Reduction 

 As mentioned above, the integrated framework consists of three stages: 
(1) Environmentally benign solvent selection (EBS) 
(2) In-process solvent recycling (IPS) 
(3) Optimal control and operation 

2.1. Solvent Selection – Product Design 

The first stage of this integrated framework is product design which is an approach to 
generate candidate solvent molecules that have desirable physical, chemical, and 
environmental properties. Computer-aided molecular design (CAMD) is one commonly used 
method. Based on the reverse use of group contribution methods, CAMD can automatically 



generate promising solvent molecules from their fundamental building blocks or groups (Kim 
and Diwekar, 2002). Solvent selection model includes properties such as (a) distribution 
coefficient (b) solvent selectivity (c) solvent loss (S L), (d) physical properties like boiling point, 
ash point, density, and viscosity, (f) toxicology, (g) environmental properties like LC50(lethal 
concentration at 50%), LD50 (lethal dose at 50%), BCF (bio-concentration factor), and 
persistence, and (h) cost. The basic diagram of CAMD is given in Figure 1.  This method can 
generate a list of candidate solvents with reasonable accuracy within a moderate time scale. 
However, CAMD is limited by the availability and reliability of property estimation methods and 
there are uncertainties in the prediction of environmental properties. These uncertainties will 
be mentioned in Section 3.  

 

         

Figure 1. Basic diagram of CAMD based on group contribution methods (Kim and Diwekar (2002) 

 

 

             

Figure 2.  Batch column configurations 
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2.1.  Solvent Recycling – Process Design 

At this stage the EBS selection and in-process solvent (IPS) recycling models are 
simultaneously integrated. Three competing batch column configurations: the rectifier, the 
stripper, and the middle vessel column are considered which are given in Figure 2. Heuristics 
and optimization are used to find the best possible column configuration. A multi-objective 
optimization framework with possible objectives: maximum product recovery, maximum 
column feasibility and minimum heat duty provide the various trade-offs necessary for a 
smooth and robust operation. Kim et al. (2004) applied this framework to an industrial case 
study involving acetonitrile and water and derived two innovative batch campaigns. In this 
paper, to further improve waste reduction, optimal operation is also considered as well as 
product and process design, which is described in the following subsection. The same case 
study will be used to see the effect of optimal operation on process recovery in Section 4.  

2.2. Optimal Control – Optimal Process Operation 

The final stage of this integrated framework is to apply optimal operation strategies to 
achieve maximum product yield and profit in solvent recycling. This is an important issue in 
batch and bio-processing because of the dynamic nature of these processes and the 
uncertainties associated with operation. The implementation of optimal operating strategies is 
important to maximize the amount of solvents recovered and to reduce the operating costs. 

Optimal reflux policy in batch distillation is a trade-off between the two operating modes 
of variable reflux and constant reflux, based on the ability to yield the most profitable operation. 
The conceptual representation of optimal reflux policy is given in Figure 3. The computation of 
this policy relies on optimal control theory. Optimal control problems in batch distillation involve 
finding an open loop solution for the reflux ratio profile. The trajectory for reflux ratio is followed 
by the controller to optimize the chosen performance index. This trajectory is optimal when the 
mathematical model accurately represents the physical phenomena.  
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Figure 3. Representation of three operating modes in batch distillation 



 For inverted columns (strippers) operating policies are constant reboil, variable reboil 
and optimal reboil. Lotter and Diwekar (1997) studied emerging batch distillation columns such 
as the batch stripper and middle vessel columns (shown in Figure 2) and derived shortcut 
models for these complex column configurations. Although the constant and variable reboil 
policies have been studied before, the stripper optimal reboil policy was not presented. In a 
similar fashion to optimal reflux policy of batch rectifier (Diwekar, 1992), the optimal reboil 
policy can be derived from optimal control theory for the stripper.   

3. Uncertainties in Integrated Framework   

The uncertainties in this integrated framework can be classified into two groups: static 
uncertainties and time-dependent uncertainties.  

3.1. Static Uncertainties 

The solvent selection model predicts parameters such as the solvent selectivity, 
distribution coefficient and solvent loss using UNIFAC. The interaction parameters between 
groups in the UNIFAC equation are obtained from regressions of experimental data and are 
thus subject to uncertainty due to experimental and regression errors. Furthermore, the activity 
coefficient at infinite condition is, by definition, extrapolated to an infinite dilution activity 
coefficient in which large discrepancies.  

For example, Figure 5 show how the uncertainties in more than 1800 interaction 
parameters present in the UNIFAC model to predict the solvent selection objectives for the 
acetic acid-water separations, collapsed in terms of three parameters in a case study by Kim 
and Diwekar (2002). In this figure, the uncertainty factor is defined as the ratio of experimental 
values of ∞γ , which is defined as the activity coefficient at infinite dilution to the ∞γ  values 
predicted by the UNIFAC model.  

 

 

 

 

 

 

 

 

 

Figure 5. Probability density functions of uncertainty factors (UFs) for the organic-water, water-organic 
and organic-organic families  
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Thermodynamics is used to identify three kinds of interactions, organic-water (lognormal 
distribution), organic-organic (lognormal distribution), water-organic (normal distribution). This 
division considers the difference between properties of water and those of organic chemicals. 
In order to deal with this uncertainty, an efficient sampling technique called the Hammersley 
Sequence Sampling (HSS) (Kalagnanam and Diwekar, 1997) was applied to this model and to 
solve this stochastic combinatorial optimization problem of solvent selection, Hammersley 
Stochastic Annealing (HSTA) algorithm was developed. For details of this work please refer to 
Kim and Diwekar (2002).   

3.2. Time-Dependent Uncertainties 

For many mixtures encountered in pharmaceutical, specialty chemical and biochemical 
industries, the thermodynamic models are not exact or there is not enough data to predict the 
behavior caused by non-idealities. These thermodynamic uncertainties are static uncertainties, 
which in most cases can be represented by probability distributions functions. However, since 
batch distillation is of unsteady state nature, static uncertainties are translated into time-
dependent (dynamic) uncertainties which affect the optimal operating conditions. 

Recently a paper by Rico-Ramirez et al. (2003) presented a new approach to optimal 
control problems in batch distillation. In this paper, Real Options Theory from finance literature 
was used to include time-dependent uncertainties in current formulations of batch distillation 
optimal control. It was proved to be very useful for an ideal system of pentane-hexane (Ulas et 
al., 2003) as well as non-ideal systems (Ulas and Diwekar, 2004). These time-dependent 
uncertainties were included in the process models by using a class of stochastic processes 
called Ito processes. The uncertainties in group contribution methods (UNIFAC) used for the 
estimation of phase equilibria and their effects on the model parameters were also illustrated in 
this work using extensive experimental data available in literature.  

Two examples of Ito processes are given in Equations 1 and 2. The first equation 
represents geometric Brownian motion, which was used previously for ideal systems and the 
second equation is for geometric mean reverting process, for non-ideal systems.  

xdzxdtdx σα +=      (1) 

      xdzdtxxndx σ+−= )(      (2) 

 In these equations dtdz tε= , where tε  is a random number drawn from a unit normal 
distribution. It was shown that the stochastic reflux ratio profile improves the process 
performance significantly as compared to the reflux ratio profile computed by deterministic 
approaches. An improvement in product yield of 69% was reported (Ulas and Diwekar, 2004) 
in a case study involving the non-ideal mixture of ethanol-water. In the case of ideal systems 
such as pentane-hexane, the product purity was improved by 11% (Ulas et al., 2003).   

 

 

 



4. Case Study 

4.1.  Acetonitrile-Water Separation – Campaign I & II 

Acetonitrile is a commonly used solvent in pharmaceutical and specialty chemical 
industries. For example ACN is consumed to purify peptide drugs in liquid chromatography 
columns (Mallinckrodt Chemicals, St. Louis, MO), however at the end of the process a mixture 
of water and acetonitrile is produced as a waste stream which forms an azeotrope. Kim et al. 
(2004) studied the separation of this mixture in two campaigns where the solvent selection and 
solvent recycling steps of this framework were simultaneously integrated. In this paper, we are 
also considering optimal operation and the effects of stochastic optimal control on solvent 
recovery and waste reduction.  

The two campaigns can be summarized below: 

Campaign I: Water Separation/Purification:  

In this campaign, pure water is separated from the ACN-water mixture for direct 
disposal of water to sewers. The water is the lower volatile component and the composition of 
the mixture is such that the ACN mole fraction is low (xACN= 0.2235, xwater = 0.7765).   

 Campaign II: Acetonitrile Separation:    

 In this campaign ACN is separated using an entrainer that is designed by CAMD 
approach as described in Section 2.1 and a batch extractive distillation process is employed to 
separate acetonitrile. The candidate solvents that were found by Kim et al. (2004) were 
acetone and propyl amine.  

 This paper focuses on the first campaign where the pure water is obtained from ACN-
water mixture. Since water is the lower volatile component (LVC), general heuristics presented 
by Kim and Diwekar (2000) suggest that a middle vessel or a stripper can be used for this 
operation. Considering the remaining performance indices suggests the use of a middle vessel 
column. A middle vessel with an infinite reflux ratio and a finite reboil ratio is designed to obtain 
the best performance. The middle vessel column has five theoretical equilibrium stages at the 
top and bottom sections. At the end of batch stripping operation, the optimal design has the 
following parameters: RB=5.1, VT=VB=77.8 kmol/h, t=4.08 hr. We have simulated this operation 
with MultiBatchDS® (Diwekar, 1996), using a semi-rigorous simulator, with zero holdup and 
83.05% recovery was obtained from this operation.    

 This high recovery was obtained for a constant reboil ratio of 5.1. In this paper we 
suggest the use of an optimal reboil policy to increase the product recovery. First we need to 
show that the optimal reboil policy indeed results in the most profitable operation by increasing 
the product yield. The following section presents a derivation of the optimal reboil policy similar 
to optimal reflux policy reported by Diwekar (1992) where the shortcut method for the batch 
stripper is used to simplify the problem and to decrease the number of state variables and the 
optimal control problem is solved using the combined maximum principle and NLP approach.   

 



4.2. Optimal Reboil Policy – Deterministic Case 

The formulation of the maximum bottom product problem for the deterministic case is 
given below based on Pontryagin’s maximum principle. The aim is to find the optimal trajectory 
of the reboil ratio to maximize the yield of the key component, (LVC), for a given purity. In the 
formulation given below, S is the amount remaining in still which is also the first state variable 
x1, Bot is the bottom product, xs(k) is the still composition of the key component which is the 
second state variable x2, xbot(k) is the bottoms composition of the key component, VB is the 
vapor boil-up rate and RB is the reboil ratio.    
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and the batch stripper column model. (Table 1)  

 
Hamiltonian: 
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The adjoint equations are: 
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Combine z1 and z2 zt = z2/z1 
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For stripper: 
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This solution is obtained by minimizing the Hamiltonian which does not incorporate the 
purity constraint. Hence the use of final boundary condition (zT=0) provides the limiting solution 
resulting in all the still charge instantaneously going to the bottoms pot ( −∞=BR ) with lowest 
overall purity. Since the formulation of the purity constraint is imposed external to the 
Hamiltonian, the final boundary condition (zT=0) is no longer valid.  

TABLE 1: 
Short-cut method for the stripper (Lotter and Diwekar, 1997) 
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Fenske Equation 
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In order to show that the optimal reboil policy results in an increase in product yield, the 
maximum bottom product problem was implemented in MultiBatchDS®

 batch process simulator. 
The problem was solved for a binary system having 100 k-moles of feed, where the feed 
composition is xF(1) = 0.4, xF(2) = 0.6, the relative volatilities are 1= 2.5, 2= 1.0, vapor boilup 
rate is VB= 40, and five theoretical equilibrium stages. First the constant and variable reboil 
policies were implemented. Note that component 2 was chosen as the key component. The 
results are shown in Table II. From Figure 4, where the three operating policies are shown, it 
can be seen that the optimal reboil policy is in between the variable and constant reboil 
policies resulting in the most profitable operation. For this case study, the improvement in 
product yield compared to constant reboil policy was 1.7% and compared to variable reboil 
policy was 4.32%. These values may change according to the system parameters, but the 
optimal reboil policy always results in an improvement in product yield. 

Table 2: Results for the three operating policies for the stripper 

 Constant Reboil Policy Variable Reboil Policy Optimal Reboil Policy 

Reboil ratio 4.75 ---- ---- 

Batch time 2 hrs 2 hrs 2 hrs 

Product yield 16.8421 16.4148 17.1242 

Product purity 0.99 0.99 0.99 

   

                                    

Figure 4. Optimal reboil policy for the batch stripper 
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4.3.  Implementation of Optimal Reboil Policy to ACN-Water Separation 

As mentioned earlier, the optimal design with a constant reboil ratio of 5.1 results in 83.05% 
recovery for ACN-water separation. In order to see the effects of optimal reboil policy on this 
process, the formulation for the stripper was slightly changed in order to incorporate the fact 
that a middle vessel with an infinite reflux ratio was used for this separation. At each time step 
the distillate composition was found using Hengestebeck-Geddes equation for the top portion 
of the column.   
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 In this equation CT should be equal to NT (number of theoretical equilibrium stages for 
the top portion of the column, since we are using infinite reflux ratio. Also the differential 
material balance equation for the still composition is changed: 
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 Finally the Gilliand correlation is also different for the middle vessel. The equations for 
X and Y for the bottom portion of the column are given below:  

Rb
RbRb

X gmin−
=  XY 5655.06187.0 −=     (12) 

 The rest of the equations are the same with the stripper since the reflux ratio is infinite.  

 It is known that acetonitrile-water mixture forms an azeotrope. The vapor liquid 
equilibrium data for a pressure of 760 mmHg (Gmehling and Onken, 1977) suggests that the 
azeotrope occurs at a composition around 70%. The vapor liquid equilibrium data is shown in 
Figure 5. 

                                           

                            Figure 5. The vapor-liquid equilibrium for acetonitrile-water system 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x1

y 1



 The shortcut method for the stripper is based on the assumption of constant relative 
volatility throughout the column. In case of azeotropic systems, the relative volatility becomes 
unity at the azeotropic point so this assumption is no longer valid. In order to deal with this 
problem, variable transformation approach is used. This approach has been presented by 
Anderson and Doherty (1984) for continuous columns and Diwekar (1991) applied this method 
to batch distillation columns. According to this method, the equilibrium curve is split into two 
parts as shown in Figure 6. Then the variables are transformed using the azeotropic 
composition.  
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 Figure 6. The vapor-liquid equilibrium for acetonitrile-water system 
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 The equilibrium relationship for the binary system in terms of the transformed variables 
is represented by:  
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 After variable transformation is applied to the acetonitrile-water system with azeotropic 
composition of the more volatile component being 70%, the relative volatility of the system was 
found as 17.02. Then this variable transformation was incorporated into the optimal control 
problem for the middle vessel with infinite reflux ratio. Since water (LVC) is separated using a 
stripping operation, the key component is 2, thus the top and bottom curves are reversed in 
Figure 6(b). The variable transformation is applied choosing the azeotropic composition as 
30% and equations 15 and 16 for the top curve. The equations for transforming the still 
composition, bottoms composition and distillate composition are given below.  

Variable Transformation 

30.0=azx  

      )1/()( )2()2(
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)2()1( 1 ss xx −=  

 After the reflux ratio is found at each time step, the variables are retransformed.  

Variable Retransformation 
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 For the next time step, the still compositions are calculated using the differential 
material balance equations. After that, the variables are again transformed. The details of this 
method can be found in detail for rectifying operation in Diwekar (1991, 1995).  

 After applying variable transformation to ACN-water separation using the middle 
vessel with the optimal design variables VT = VB =77.8, batch time = 4.08, 94.5 k-moles of feed 
with a composition of   xACN= 0.2235, xwater = 0.7765, five theoretical equilibrium stages at the top 
and bottom and an infinite reflux ratio, the optimal reboil policy was computed. A recovery of 
87.12% was achieved with this operation. The optimal reboil profile is shown in Figure 7.  

 As mentioned earlier 83.05% recovery was achieved with optimal design. Integration 
of optimal design and optimal operation results in 4.07% improvement in product yield. The 
comparison of profiles for the bottoms product and results for product purity and yield are 
shown below in Figures 8, 9 and Table 3. Note that the semi-rigorous models were used to 
compare the results of constant reboil and optimal reboil cases, where the column holdup 
effects are not considered.  



   

   Table 3. The comparison of results for constant reboil and optimal reboil cases   

 Constant Reboil Optimal Reboil 
Bottoms Product (Bot) 62.30 65.14 
Bottoms Purity (xs

(2)) 97.8% 98.1% 
Recovery 83.05% 87.12% 
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Figure 7 (a) Optimal reboil policy for the stripper, (b) comparison of constant reboil and optimal reboil 
policies on a log scale  

 

 

 

 

 

 

 

 

(a) (b) 
 
Figure 8 (a) Profiles for the bottoms product for constant reboil and optimal reboil cases, (b) Profiles for 
the amount remaining in still (middle vessel) for constant reboil and optimal reboil cases 
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   (a)     (b) 
Figure 9 (a) Profiles for the still composition of acetonitrile for constant reboil and optimal reboil cases, 
(b) Profiles for still composition of water for constant reboil and optimal reboil cases 
 
 

4.4. Time-Dependent Uncertainties in ACN-Water Separation  

 We have shown in the previous section that, optimal reboil policy results in an 
improvement in product yield for the separation of a low volatile component from an azeotropic 
binary mixture. For the azeotropic system of ACN-water, an approximate model, namely 
variable transformation was used to recognize the azeotropic point as an impassable barrier, 
which the column composition profile cannot reach beyond. The recovery from the middle 
vessel can be increased even more when the relative volatility is considered as a time-
dependent uncertainty and modeled accordingly.  

 

 

 

 

 

 

 
         (a)      (b) 

Figure  10 (a) Time dependent changes in relative volatility with respect to time and plate taken from a 
semi-rigorous model (b) Representation of relative volatility as a geometric mean reverting process with 
66% confidence intervals 
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Previously, for azeotropic systems such as ethanol-water the time-dependent changes in 
relative volatility were modeled using the geometric mean reverting process, as shown in 
Equation 2 (Ulas and Diwekar, 2004), which resulted in significant improvement in product 
recovery.  

 Applying the same principle here for the ACN-water, the variation of relative volatility 
with respect to time and each plate was found using the semi-rigorous model of MultiBatchDS 
as a proxy for real experiments. The result of the simulation is shown in Figure 10 (a).  

 Two different sets of parameters for two time periods were used to model the changes 
in relative volatility as a geometric mean reverting process, which is shown in Figure 10(b), 
because of the sudden decrease in relative volatility when the batch time is 3.08 hours. For the 
first time period, at the end of regression analysis the parameters were found as 86.0−=η , 

5.17=α , 003.0=σ , for the second time period the parameters were,  0.7=η , 0.3=α , 4.0=σ . 

It should be highlighted that α  represents the value which α tends to revert,  is the speed of 
the reversion and σ is the standard deviation.  

4.5.  Optimal Reboil Policy – Stochastic Case  

 Since we have modeled the time-dependent uncertainties with the geometric mean 
reverting process, we can revisit the maximum bottom product problem. The uncertainties in 
relative volatility affect one of the state variables, the still composition. This can be derived 
from Hengestebeck-Geddes equation similar to the rectifier case. Therefore, the still 
composition can also be represented by an Ito process. The maximum bottom product problem 
becomes:  
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The adjoint equations are: 
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The final solution is: 
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where:  

Vb = boilup rate 
RbU = reboil ratio (uncertainty) 
xbot = bottoms composition 
xs = still composition 

iα  = relative volatility 
Nb = number of bottom plates 
F = feed 
 
 The effects of stochastic optimal reboil policy on acetonitrile-water separation remains 
to be studied. Considering the excellent results from the stochastic optimal reflux policy for the 
rectifier, it is expected that this approach will be very useful in solvent recycling problems in 
batch processing industries.  

5. Conclusion 

 An integrated framework has been developed that involves solvent selection, solvent 
recycling and optimal operation under uncertainty for batch processing industries. This 
framework was applied to a solvent recycling problem in peptide drug production. For binary 
azeotropic systems, this framework selects candidate solvents based on computer-aided 
molecular design. Then the optimal batch column configuration is selected based on the 
parameters for separation and heuristics. Finally the optimal operation policy is found for the 
best column configuration. It was shown that similar to the optimal reflux policy for the rectifier, 
the optimal reboil policy improves the product yield significantly for the stripper and middle 
vessel column configurations and results in the most profitable operation.   

 Uncertainties are considered in two categories in this framework: static uncertainties 
and time-dependent uncertainties. The static uncertainties constitute the uncertainties in 
UNIFAC which have a significant effect on the CAMD model. An efficient sampling technique, 
the HSS sampling is used to deal with static uncertainties. Since batch distillation is a dynamic 
process, the static uncertainties are translated into dynamic uncertainties, which in turn affect 
the optimal operating profiles. These dynamic uncertainties are modeled using Ito processes in 
this paper.  

 The effect of time-dependent uncertainties on the optimal reboil policy is yet to be 
explored. It is expected that the product recovery will exceed the recovery found using an 
approximate variable transformation technique for the separation of azeotropic mixture 
acetonitrile-water.  

 This integrated framework promises to be very useful for waste reduction in 
pharmaceutical and specialty chemical industries, to achieve the most efficient, 



environmentally friendly and profitable separation process both at the stages of design and 
operation.      
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