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Abstract

An important feature of nematic liquid crystals is the coupling between the orientation and
velocity fields that results in flow-induced orientation and re-orientation induced flow. Due to
the viscoelastic nature of the material this coupling can have an effect on the effective flow rate
of pulsatile flow. In the present study, the pulsating flow of uniaxial, isothermal, incompressible
discotic nematic liquid crystals in a capillary is analyzed using the Leslie-Ericksen equations.
The computations were done by using the Galerkin finite element methods for space
discretizations and 4th order Runge-Kutta method for time integration. The results indicate that
flow-rate-enhancement or flow-rate reduction are possible, according to the magnitude of the
average pressure drop. The fundamental mechanisms that lead to flow-rate enhancement and
reduction are established using liquid crystal physics. The role of pressure drop amplitude and
oscillation frequency on flow-rate is characterized and explained using principles of
nematodynamics. The role of shear thinning and shear thickening behavior on flow-rate
enhancement and reduction is established.

Introduction

Pulsatile flows of non-Newtonian fluids have attracted wide interest due to potential
uses as a characterization tool, optimization of pressure-driven processing flows, and
applications in biofluid mechanics [1,2,3]. A widely studied oscillatory flow is pressure-driven
pulsatile capillary Poiseuille flow, were the pressure-drop undergoes temporal harmonic
oscillations, and relative flow-enhancement over the steady values is characterized as a
function of pressure-drop amplitude, frequency, and base value. Shear-dependent viscosities
and internal relaxation times are examples of properties accessible through pulsatile flow. If
power input increases at a lower rate than flow-enhancement does, then this transient flow
provides energy savings with respect to steady flows.

The pulsatile flow of viscoelastic liquids and viscoplastic suspensions have been
widely analyzed theoretically and experimentally and the mean flow rate enhancement has
been characterized [1,4,5,6]. Theoretical predictions of mean flow rate enhancement as a
function of frequency and amplitude of pressure-drop oscillation has been evaluated for many
constitutive equations. These pulsatile flow studies found that shear-thinning causes flow-
enhancement, and that the flow enhancement is proportional to the square of the relative
amplitude of the oscillating pressure gradient. For viscoplastic materials, it was found that the
flow rate enhancement is independent of the frequency but proportional to the square of the
amplitude the oscillating pressure gradient. Based on previous work, it can be concluded that
flow-enhancement may be driven by: inertia, and shear thinning. On the other hand the
frequency dependence of flow-enhancement is due to viscoelasticity. This paper presents a
computational study of a model liquid crystalline viscoelastic material, that exhibits both shear-
thinning and shear-thickening, and hence flow-reduction and flow-enhancement are predicted.



In addition the presence of a single relaxation time results in resonance when the externally
applied frequency is close to orientation time scale.

Uniaxial discotic nematic liquid crystals (DNLCs), here denoted as discotic
mesophases (DMs) are characterized by an average molecular orientation represented by the
director vector n. In this phase the unit normals to the disk-like molecules orient close to the
director n [7]. Simulations and experiments indicates that the apparent viscosity in steady
Poiseuille flow can be of the shear thinning type or non-monotonic, depending on the adopted
orientation [8]. Natural and synthetic mesophase pitches, which are precursor used in the
manufacturing of high performance carbon fiber by the melt spinning process, are examples of
discotic nematic liquid crystals; also highly filled clay-based polymer nano-composites are
expected to display nematic ordering.

Transient nematic flows are characterized by the presence of three important
viscoelastic phenomena [9]: backflows, viscosity reduction mechanisms, and transient re-
orientation effects on velocity. Backflow is the inverse of flow-induced orientation, and is most
dramatic in cessation of flow, where the stored elastic energy is dissipated by viscous flow.
Viscosity reduction occurs when the director rotates in an otherwise steady flow, and is
another manifestation of orientation-induced flow. When the amplitude of the re-orientation is
small the viscosity reduction is given by a simple combination of material properties, but when
the amplitude is large the reduction is a non-linear function of the director field. Transient
director re-orientation will affect the velocity since the viscosity is orientation dependent. In
simple shear flows this effect is quantified by the stress overshoot measurements, while in
transient Poiseuille flows it will be quantified by the flow rate [8,10].

This paper characterizes flow-enhancement in capillary pulsatile Poseuille flow of a
model discotic nematic liquid crystal, identify flow-enhancement and flow-reduction
mechanisms driven by liquid crystalline order, and anisotropic viscoelasticity, and identifies
specific viscoelastic material properties that have the largest impact on flow-enhancement.

Governing Equations

In flowing liquid crystal systems, elastic and viscous stresses are usually both
important. The continuum theory of elasticity of liquid crystals takes into account external
forces that distort the spatially uniform equilibrium configurations of liquid crystals. For
Poiseuille capillary flow, using cylindrical coordinate system, Fig.1, axisymmetric planar
director field ( ( ) ( )( )tr,θcos0,,tr,θsint)(r, =n ) and purely axial velocity field ( ( )t)v(r,0,0,t)(r, =v )
the dimensionless governing equations for the director tilt angle ( )t~,r~θ  and the axial velocity

( )t~,r~v~  are [8,10]:
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where iα~  are the dimensionless Leslie viscosities ( ηαα~ ii = ), η is the average Miesowicz
viscosity, 1133 KKε =  is the ratio of the bend and the splay Frank elastic constants,

( ) 11
3 KdzdpRE −=  is the ratio of viscous flow effects to long-range elasticity effects known as

the Ericksen number, Rrr~ =  is the dimensionless radius, R is the capillary radius,
( )ηRtKt~ 2

11=  is the dimensionless time, 11KvRηv~ =  is the scaled axial velocity, - dzdp

is the given pressure drop in the capillary per unit length, B~  is the dimensionless backflow,
( )G θ is the dimensionless local viscosity function, ( )ϒ θ is the dimensionless re-orientation

viscosity and ( ) ( )U θ G θ  is the backflow dimensionless viscosity function.
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Figure 1. Schematic representations of the flow in a capillary showing an uniaxial disc-like
molecules with unit normal vector (u), director vector (n), velocity vector (v), velocity gradient
(∇v), alignment angle (θ) and the cylindrical (r,φ,z) coordinate system used to describe a
generic point P.

Under oscillatory pulsatile flow, the pressure drop (–dp/dz) oscillates with amplitude A,
frequency ω, around a mean -dp dz :

( ) ( )dp dp- A, , t - 1 Asin t
dz dz

ω = + ω                                                                                      (10)

and the dimensionless solution vector to Eq.(1) and (2) is given by:
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where ( )E A, ω, t  is now the transient Ericksen number, oE  is the average Ericksen number,

-dp dz  is the average pressure-drop,  ( )2
11R η / Kω = ω  is the dimensionless frequency.

Note that the frequency ω is scaled with the orientation time scale τo:

( )2
o 11τ R η / K=   (12)

Under steady capillary Poiseuille flow, E=Eo, A=0 and the solution vector is given by:

( )s s ov v r, E= , ( )s s o r, Eθ = θ , ( )
3
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Equation (1) is a parabolic partial differential equation, whereas the Eq (2) is a first
order space dependent ordinary differential equation (ODE). The Eq. (1) is independent of
Eq.(2) and hence the governing equations are semi-coupled. Since inertia is neglected in the
linear momentum balance, no initial condition on the velocity can be imposed since it is an
ODE. The boundary conditions for Eq.(1) are: (θ(0,t) θ(1,t) 0= = ), and represent strong planar
anchoring. For the Eq.(2) the no slip condition at the bounding surface is used: 0)t~(1,v~ = .

The calculations presented here are performed using a set of characteristic DMs
viscoelastic material parameters listed in Table 1, which correspond to the six scaled Leslie
coefficients calculated to carbonaceous mesophase [12]. The essential features of the
solutions and the main conclusions of this paper will remain unaffected if the reactive
parameter ( ( ) ( )2323 αααα −+−=λ ) is less than minus one and if the Miesowicz
inequalities (η1 > η3 > η2) hold.

Table 1: Viscoelastic Parametric Values
Dimensionless Leslie viscosities coefficients    ( ηαα~ ii = )

1α~ 3.6289

2α~ 0.046800

3α~ 0.66500

4α~ 2.0270

5α~ -0.54000

6α~ 0.17200
Elastic ratio

       ε 0.66667

Equation (1) is solved numerically using the Galerkin Finite Element method for spatial
discretization and finite differences for temporal discretization [13]. The spatial discretization
uses 200 to 250 linear elements and a non-uniform mesh, with a larger node density in the
center and at the capillary walls.  For time integration we used the 4th order explicit Runge-
Kutta method with a fixed time step of 1.5x10-7 to 2.8 x10-7; the integrals were computed using



three points Gaussian quadrature and the resulting set of non-linear equations are solved
using the Newton-Raphson iteration scheme. The numerical convergence is assumed to occur
when the length of the difference between two successive solutions vectors is less than 10-10,
and the mesh independence was established using standard mesh refinement criteria.
Equation (2) and the flow-rate in the capillary are calculated using three points Gaussian
quadrature. A typical calculation proceeds as follows. Initially, the Ericksen number is set equal
to the average value Eo, to assure that the pulsatile flow will arise only after the orientation is at
the steady state, which is reached when the difference between two successive solution
vectors is less than 10-8. Next, the moving average flow-rate for an oscillation cycle is
calculated using three points Gaussian quadrature. We assume that convergence is achieved
when the difference between the larger and the lower values of the flow rate in the cycle is less
than 0.01, and the final value of the flow rate is taken to be the average between these two
nearly identical values.

Flow-Enhancement

Flow-enhancement is defined as the relative flow rate change with respect to the
steady state flow rate, for a given average pressure drop, amplitude A, and frequency ω. In
dimensionless form the flow-enhancement is given by:
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where the dimensionless steady state flow rate ( )s oQ E  is given by:
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and the dimensionless average flow-rate Q  is:
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and τ  is the cycle period.

To characterize the mechanism responsible for flow-enhancement we must use the
dimensionless apparent steady viscosity:
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=       (17)

and the following viscoelastic properties: Miesowicz viscosities, reactive parameter, and the re-
orientation viscosities [8,10].

Numerical results and discussion

Figure 2 shows the steady director angle θ as a function of dimensionless distance r~ ,
for Eo= 1, 10, 102, 103 and 104, and A=0. The figure shows that large orientation profiles
distortions occur for 10<Eo<104. For Eo>104, the system is flow-aligned, while for Eo<10, there



is little distortion. Figure 2 also shows the corresponding steady dimensionless velocity ( )sv r
as a function of a function of dimensionless distance r~ . For Eo>104, and Eo<10 the velocity
profile is parabolic (Newtonian). Note that the viscoelasticty is significant within the interval
10<Eo<104.
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Figure 2. Steady director angle θ as a function of dimensionless distance r~ , for Eo= 1, 10,
102, 103 and 104, and A=0.

Figure 3 shows the steady dimensionless apparent viscosity app,sη  and the flow rate
enhancement I as a function of the average Ericksen number Eo in pulsating flow, for A=0.5, 1,
and ω=50. The viscosity is shear-thickening and thinning [8]. The interval of viscosity changes
is 10<Eo<104. The figure shows that flow-enhancement in DNLCs is negative in the shear-
thickening region, and positive in the shear-thinning region. The Newtonian cross-over (I=0) is
close to the viscosity maximum: app,s od / dE 0η = , and nearly to amplitude-independent. Note
that increasing amplitude increases the magnitude of I. Increasing frequency decreases the
magnitude of I. The cross-over (I(Eo=EN)=0) is nearly independent of amplitude and frequency.
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Figure 3. Steady dimensionless apparent viscosity app,sη  and the flow rate enhancement I as a
function of the average Ericksen number Eo in pulsating flow, for A=0.5, 1, and ω=50.



The figures show the following response:

 Asymptotic Newtonian regime, 0E 0 : I 0→ →
 Flow-reduction regime, 0 N0 E E 100 : I 0< < = <
 Newtonian cross-over, 0 NE E 100 : I 0= = =
 Flow-enhancement regime, 0 NE E 100 : I 0> = >
 Asymptotic Newtonian regime, 0E : I 0→ ∞ →

For very high or very small Eo, the behavior is Newtonian and I=0.

To explain the underlying mechanism that drives flow-enhancement and flow-reduction
one focus on the oscillating director and velocity profiles, across one cycle. Figure 4a shows
the local dimensionless viscosity function ( )( )G r, tθ  for one oscillation cycle, corresponding to

the flow-reduction regime (Eo=50<EN), for A=1, and ω=100. The profiles cycle between two
cubic with a local maxima in the interval 0.6 r 0.7< < . At r 0,1= , the director is fixed along the

flow-direction and the viscosity is: ( )( ) ( )( ) 1G 0, t G 1, t 1.43θ = θ = η = . In this regime the viscosity

function profile oscillates as follows:

o NE E< , ( ) ( )1 max max <  G  < G    η θ θ               (18)

At these pressure-drops there is no flow-alignment and the local viscosity is high. Figure 4a
shows the local dimensionless viscosity function ( )( )G r, tθ  for one oscillation cycle,

corresponding to the flow-reduction regime close to the Newtonian cross-over (Eo=EN) at which
flow-enhancement vanishes, for A=1, and ω=100. Note that these profiles cycle between a
cubic and a curve with two local maxima and a local minimum. At r 0,1= , the director is fixed

along the flow-direction, the viscosity is: ( )( ) ( )( ) 1G 0, t G 1, tθ = θ = η . In this cross-over the

viscosity function profile oscillates as follows:

o NE E≈ ,   ( ) ( )1 max max <  G  = G    η θ θ      (19)

The viscosity now samples its maximum value, but in the interval r 0.3 0.9≈ − , a viscosity
reduction sets since the director attains angles closer to alθ =1.31 , which are associated with
lower viscosity. Hence the underlying mechanism operating at the Newtonian cross-over is the
orientation-dependent local viscosity. As the pressure drop increases across the transition
value, an annular region arises periodically, where director oscillates increasingly closer to the
flow-alignment. Figure 4c shows the local dimensionless viscosity function ( )( )G r, tθ  for one

oscillation cycle, close (Eo=500>EN) at which flow-enhancement is positive, for A=1, and
ω=100. The profiles cycle between two curves with two maxima and a local minimum,
corresponding to a three regions: core region, intermediate annular region, and wall region. In
the annular region the viscosity cycles between ( )max maxG θ  and ( )al alG θ . The decrease in
viscosity in the annular region drives the flow-enhancement process. Figure 4d shows the
scaled Ericksen number ( ( )( )oE t E -1 Aω ) as a function of t~ω~ , across one cycle. These

figures also show the geometrical features and amplitude changes that lead to flow-



enhancement. In the flow-reduction regime, the annular region corresponds to high viscosity
and its area is nearly constant, while the inner core is low viscosity. In the Newtonian cross-
over the geometry and intensity change, such that the variable width annular region pulsates
between higher and lower viscosities. In the flow-enhancement region, the variable width
annular region annular region corresponds to low viscosity.
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Figure 4. Local dimensionless viscosity function ( )( )G r, tθ  for one oscillation cycle for A=1,

and ω=100: (a) (Eo=50<EN), (b) (Eo=EN), (c) (Eo=500>EN). (d) Scaled Ericksen number
( ( )( )oE t E -1 Aω ) as a function of t~ω~ , across one cycle.

Conclusions

Discotic nematic liquid crystals and anisotropic viscoelastic materials, and the
orientation-dependent shear viscosity is a physical property that can result in Non-Newtonian
responses. In pressure-driven capillary Poiseuille flow, the apparent viscosity is non-
monotonic, and exhibits shear thickening followed shear-thinning behavior. This unusual
behavior is a direct result of orientation-dependent viscosity. Under pulsatile flow, this
mechanism gives rise to flow-reduction followed by flow-enhancement. The mechanism
responsible for shear thickening in steady flow, is responsible to flow-reduction in pulsatile
flow. The mechanism responsible for shear thinning in steady capillary Poiseuille flow, is
responsible to flow-enhancement in pulsatile flow.
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