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1. Introduction 

 

Flow instabilities are widely encountered during the extrusion of non-Newtonian fluids 

through various types of dies. Flow instabilities are manifested during extrusion by the 

occurrence of various types of distortions of the surface or the bulk of the extrudates, 

sometimes accompanied with time-dependent fluctuations in the pressure necessary to 

drive the flow under constant volumetric flow rate conditions. Various types of 

distortions of the extrudates are referred to as melt fracture, shark skin, gross surface 

irregularities, spurt flow, slip/stick flow. The occurrences of such distortions of 

extrudates present bottlenecks, i.e., upper limits to the manufacturing rates in extrusion 

based processing of polymers and polymeric suspensions. Consistent with its industrial 

importance it has received significant academic and industrial attention [Benbow and 

Lamb (1963); Petrie and Denn (1976); Denn (2001); Kalyon and Gevgilili (2003)]. 

However, as suggested by Denn (2001), the instability phenomenon remains as an issue 

that is far from being clearly understood. 

 

Capillary and slit die flows are often used as prototypes for studying the development of 

flow instabilities [see, for example, Lim and Schowalter (1989), Donlder et al. (1998), 

and Ovaici etc (1998)].  Previous studies have indicated that compressibility of the melt 

and slip at the wall are two important factors leading to the instabilities. Particularly, it 

was suggested that the discontinuity in the wall slip velocity versus wall shear stress 

relationships  can lead to the onset of flow instabilities [Hatzikiriakos and Dealy (1992a), 

or (1992b)?]. Other studies have suggested that the flow instabilities can occur on the 



  

negative-slope branch, e.g., during which the slip velocity decreases as wall stress 

increases [Georgiou (2003)].  

 

This study is a continuation of our earlier studies [Kalyon and Gevgilili (2003) and 

Kalyon et al. (2003)] which aim at probing the effects of the flow boundary condition at 

the wall on the development of flow instabilities and extrudate surface irregularities upon 

the extrusion of polymer melts and polymeric suspensions. In these earlier studies the 

wall slip and flow instability behavior of two polymers, i.e., a poly (dimethyl siloxane), 

PDMS and an oxetane based alternating block thermo plastic elastomer BAMO/AMMO-

TPE were studied along with the wall slip and flow instability behavior of PDMS filled 

with 10, 20, 40% by volume of hollow glass spheres and 60% by volume of KCl Filled 

BAMO/AMMO- TPE. Steady torsional flow was used in conjunction with the straight-

line marker technique to analyze wall slip in steady torsional flow. Thermal imaging and 

high-speed cinematography were used with capillary flow to characterize the surface 

features of extrudates emerging from capillary dies. The effects of the convergence 

angle from the reservoir into the capillary die were also investigated (15, 45 and 75°) 

for unfilled PDMS and 10% glass filled PDMS.  It was determined that the angle of 

convergence of the capillary die had no effect on the development of surface 

irregularities for these materials. 

 

The incorporation of the glass filler into the PDMS binder gave rise to a reduction of 

the apparent shear rate range over which gross surface irregularities were observed. 

Furthermore, the extrudates of PDMS with the greatest solid loading level of our 



  

study, i.e., 40% by volume spherical glass were largely free from surface 

irregularities except at relatively very low apparent shear rates. On the other hand, 

BAMO/AMMO elastomer melt, which exhibits stable stick over relatively high 

strains and shear rates in steady torsional flow does not exhibit surface irregularities 

in the same shear rate range in capillary flow [Kalyon and Gevgilili (2003)]. However, 

the incorporation of rigid particles into the BAMO/AMMO elastomer gives rise to 

flow instabilities and surface irregularities during extrusion. 

 

 These earlier results suggested that the mechanisms for the development of surface 

irregularities of the extrudates of polymers and polymeric suspensions appear to 

depend on the stability of the wall boundary condition. Our hypothesis was that if a 

stable stick condition or a stable wall slip condition prevails at the wall over a broad 

range of shear rates, then flow instabilities are not observed over the same shear rate 

range. However, if there is a transition from a stick to slip or slip to stick condition 

then flow instabilities are experimentally observed at the transition point.  

 

Our previous work has also shown that the wall slip behavior of polymers and 

polymeric suspensions is significantly affected by the amount of air entrained into the 

melt [Aral and Kalyon (1995); Kalyon et al. (1995)]. This intuitively suggests that the 

wall slip behavior would be a function of pressure due to the compressibility of the 

melt and the air it contains, as indeed found to be the case by Dealy and co-workers 

[Hatzikiriakos and Dealy (1992b)]. Following up on the compressibility and wall slip 

issues recently, we have derived analytical solutions for steady compressible capillary 



  

and slit flows of generalized Newtonian fluids subject to pressure-dependent wall slip. 

These solutions show that, with the slip coefficient assumed to be inversely proportional 

to pressure, slip velocity increases in the flow direction and the flow can become a plug 

flow at the exit of the die. 

  

This present paper extends the steady analysis to the time-dependent analysis of the 

extrusion flow subject to pressure dependent wall slip condition. As experimental 

evidence we will use results from our previous studies focusing on an unfilled 

poly(dimethyl siloxane),  PDMS, melt and PDMS filled with 40% by volume of glass 

spheres [Kalyon and Gevgilili (2003); Kalyon et al. (2003)]. 

 

II. Experiments 

  

Materials 

The poly(dimethyl siloxane),  PDMS, was procured from GE (GE Silicones-SE-30).  

It has a density of 980 kg/m
3
 at ambient temperature and a zero shear viscosity of 

28,900 Pa-s at 30 ºC. The filler particles consisted of spherical hollow glass particles 

with a specific gravity of 1.09 and an arithmetic mean particle diameter of 12 µm 

(Potters Industry).   

 

Experimental apparati and procedures 

 
An Advanced Rheometric Expansion System (ARES) rheometer, from Rheometric 

Scientific, Inc., Piscataway, NJ (currently TA Instruments), was utilized in 



  

conjunction with steady torsional flow using cone-and-plate and parallel-disk 

configurations. The environmental chamber was equipped with an imaging window 

and auxiliary optics for continuous monitoring of the free surface of the specimen 

[Aral and Kalyon (1994); Gevgilili and Kalyon (2001)]. A high-speed camera, 

capable of recording at filming speeds as high as 2,000 frames per second, was part of 

the set-up.             

During steady torsional flow a straight- line marker was placed on the edges of the 

cone/plate and the free surface of the polymer melt to enable the characterization of the 

wall slip velocity and the true deformation rate [Kalyon et al. (1993), Aral and Kalyon 

(1994); Gevgilili and Kalyon (2001)]. The discontinuities that develop between the 

surface of the plates of the rheometer and the bulk of the melt suggest the initiation of 

wall slip. The steady wall slip velocity values determined using the straight- line marker 

technique agree well with the steady wall slip velocity values determined upon the 

analysis of the dependence of the shear stress on the surface to volume ratio of the 

rheometer, i.e., the conventional Mooney technique [Kalyon et al. (1993)]. The steady 

torsional flow behavior of the PDMS and filled PDMS was characterized at various shear 

rates and temperatures to determine the conditions under which the catastrophic failure of 

the no-slip condition became apparent.  

 

An Instron capillary rheometer was employed to collect additional shear viscosity data 

and to study the development of extrudate distortions upon exit from the die. The 

diameters, length over the diameter ratios and the converging angle of the tapered entry 

geometry connecting the reservoir of the barrel of the rheometer to the straight land 



  

section of the capillary die were changed systematically. The shapes of the extruded 

samples, immediately upon extrusion from the die, were captured using a high-speed 

camera to allow the immediate characterization of the surfaces of the extrudates. The 

surface temperature distributions of the extrudates emerging from the die were also 

monitored using a ThermaCam thermal imaging camera. The temperature of the material 

immediately upon exit provided data on the effect of viscous energy dissipation and 

allowed the determination of the true temperature of the melt.  

 

Experimental results 

In case of unfilled PDMS steady torsional flow, used with the straight- line marker 

technique, suggests that PDMS exhibits strong wall slip (which is observed as a 

discontinuity in the marker line at the melt/wall interfaces) in the neighborhood of  

0.07 MPa (Figure 1). Previous studies with the same PDMS have indicated that this 

critical shear stress, at which strong wall slip is initiated, is temperature independent 

[Kalyon and Gevgilili (2003)]. 

 

The various types of extrudate distortions observed with the unfilled PDMS as a 

function of the flow conditions are shown in Figure 2. The wall shear stress values 

were Bagley corrected by using a series of capillaries with systematically-varied 

length over diameter ratios of 1, 20 and 40 (or 60). At shear stress values greater than 

0.07 MPa severe extrudate surface and bulk distortions were observed for PDMS. 

This wall shear stress coincides with the critical wall shear stress in steady torsional 

flow at which wall slip is onset.  In the relatively low shear rate range the extrudates 



  

of PDMS become undistorted and smooth, and the pressure monotonically increases 

to its steady state value. Over a transition region of 0.04 to 0.07 MPa the surfaces of 

the extrudates become relatively rough but the bulk is not distorted.   

 

Similar experiments were carried out on PDMS suspensions filled with 10-40% by 

volume of glass spheres. The typical results for PDMS suspension with 40% by 

volume glass are shown in Figures 3 and 4. Figure 3 shows the typical steady 

torsional flow results for the 40% glass filled PDMS. Strong wall slip, as evidenced 

by the discontinuities in the straight- line marker occurring at the suspension/wall 

interface, occur at a critical wall shear stress range of about 0.029 MPa to 0.035 MPa 

for the 10-40% by volume glass filled PDMS suspensions. This critical wall shear 

stress is thus smaller than the critical wall shear stress value associated with the onset 

of strong wall slip observed for the unfilled PDMS.  

 

The capillary flow curve s for the 40% glass filled PDMS and the extrudates emerging 

from the capillary under various conditions are shown in Figure 4. The extrudates 

shown in the inserts were collected using four capillary dies with a constant length 

over diameter ratio of 40 and with diameters of 0.0328” (.83 mm), 0.059” (1.5 mm), 

0.0984” (2.5 mm) and 0.1378”  (3.5 mm) and a length over diameter ratio of 60 at a 

diameter of 2.5 mm. The wall shear stress values were Bagley corrected by using a 

series of capillaries with systematically varied length over diameter ratios of 1, 20 and 

40 (or 60). The surface to volume dependence of the flow curves of 40% glass filled 

PDMS are clearly seen, i.e., with increasing surface to volume ratio (decreasing 



  

diameter of the capillary die) the wall shear stress decreases at constant apparent 

shear rate suggesting wall slip. Over a broad range of shear rates the extrudates of the 

40% glass filled PDMS are smooth and completely free of any type of surface 

irregularities. However, at relatively very small shear rates in the range of 0.5 1/s and 

less, and for the capillary with the length over the diameter ratio of 60, the surfaces of 

the extrudates become distorted. It is interesting to note that the wall shear stress 

values at which this surface irregularities are observed are smaller than the critical 

wall shear stress value of the suspension at which strong wall slip is onset in steady 

torsional flow (0.035 MPa).  

 

The  comparisons of Figs. 2 and 4 suggest that the surfaces of unfilled PDMS are free 

of distortions in the low shear rate range but  become distorted at shear stresses which 

are generally above 0.07 MPa with some relatively minor surface roughnesses setting 

in over a transition region (0.04 MPa to 0.07 MPa). On the other hand, for the 40% 

filled PDMS the extrudates are free of surface and bulk irregularities over a broad 

range of shear rates and shear stresses but distortions set in at wall shear stress values, 

which are smaller than about 0.035 MPa. Thus, the flow instability behavior is 

reversed between the unfilled and filled PDMS.  

 

The purpose of the paper is to present a mathematical model of the flow in a capillary die 

(Figure 5) and apply it to the extrusion of unfilled PDMS and 40% PDMS. The two fluids 

are considered to be compressible.  The flow is isothermal, time-dependent and subject  

to wall slip with strong slip onset at the critical shear stress. The objective was to 



  

determine if the consideration of the compressibility and the wall slip behavior of the 

PDMS melt and its suspension are sufficient to predict the conditions under which flow 

instabilities for PDMS and its suspensions  are onset. Consistent with the earlier literature 

on the subject [Hatzikiriakos and Dealy (1992a); Georgiou, (2003)]  the viscoelasticity 

of the melt and the suspension is ignored (this would have introduced various types of 

numerical instabilities which would not have allowed us to probe the effects of 

compressibility and wall slip alone) and the fluids are considered to behave as 

generalized Newtonian fluids flowing under lubrication flow conditions.   

 

 

III.  Simulation of the Time-dependent Flow Field  

 

Mathematical models 

 

The materials of the study, i.e., PDMS and the filled PDMS are considered to be 

compressible:  

                                             

                                                    1γγρ += p ,                                        (1) 

 

where ρ  is the density, p is the pressure, γ  and  1γ  are constants. The  flow is 

considered to be subject to wall slip using a non-linear relationship between the slip 

velocity and shear stress [Yilmazer and Kalyon (1989); Zhang et al. (1995)]: 

                                                      sb
rzzu βτ= ,       (2)                                    



  

 

which is further modified to include the concept of a critical wall shear stress above 

which strong wall slip is observed:  

 

                                                  ( )( ))aw(tanh1sb
wsu τ−τα+βτ= .                     (3)                       

 

Here, su  is the slip velocity, wτ  is the wall shear stress, aτ  is the critical wall shear stress 

at which strong slip occurs, β  is the Navier’s slip coefficient, sb is an empirical constant, 

and α  is a positive constant. When wτ < aτ , the slip velocity is assumed to be negligible, 

while for  wτ > aτ , wall slip becomes significant.  

 

The assumptions of the analysis were:  1) the flow is axis-symmetrical, 2) pressure 

changes only in the axial, z-direction, 3) the convection term and temperature effects 

from the continuity and momentum equations are ignored, 4) only the straight land 

section of the tube die is considered and thus the converging section of the capillary die is 

ignored. With these assumptions the equations of continuity and momentum become: 
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where V is the cross section averaged velocity and t is time.     

 

In this study, viscoelastic effects are ignored and PDMS and filled PDMS are taken to be 

generalized Newtonian fluids, with their shear viscosity behavior represented by the 

Herschel-Bulkley fluid.  It is assumed that the wall stress can be calculated from steady 

flow as follows: 
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It should be noted that Hatzikiriakos and Dealy (1992b) have shown that a second term 

involving the derivative of the wall shear stress with axial distance in the circular tube 

needs to be added to take into consideration of the normal stress differences under 

lubrication flow conditions. However, this term was found to be negligible for our 

polymer and its suspensions.  

 

The  generalized Newtonian fluid with  Herschel-Bulkley model is:  
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where yτ  is the yield stress, m is the consistency index and n is the power law index. 

Equation (5) reduces to a power law fluid model when 0=yτ .  
 
  



 

Under steady state flow conditions the solution for the mean velocity, V,                                  
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The boundary conditions for the flow are given as the following at the entry and exit 

planes of the tube:  
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and the initial condition is set as a pseudo-steady flow.  In summary, the flow problem in 

this study is formulated as Equations. 3-8.  



 

 

 

Numerical methods  

 

The flow domain was covered by a uniform grid with nodes i=1,2,3,…,I. The staggered 

mesh method is employed and the predictor-corrector scheme is used to discretize the 

above governing equations, that is: 
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where t∆  is the time step, z∆  is the grid spacing, l is the time step index, and F is the 

function defined as the RHS of Eq. (7).  

 

Correction: 
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In the above, the 4th equation in both prediction and correction steps is solved by Newton 

method. Moreover, pressure at the entry plane and velocity at the exit plane are obtained 



 

by extrapolation. The computer code was validated using analytical solutions related to  

steady-state solutions of the above equations for which we could obtain analytical 

solutions.    

 

Numerical  Solutions  

The critical wall shear stress aτ  for 40% and unfilled PDMS are 35000 and 70,000 Pa, 

respectively [Kalyon and Gevgilili (2003); Kalyon et al. (2003)].   Pressure-volume-

temperature, P-V-T, experiments were used to determine the compressibility coefficients 

for the PDMS and 40% by volume glass- filled PDMS. It was determined that 

26106.1 −− ⋅×= smγ  and 3
1 4.1073 −⋅= mkgγ for 40% PDMS and 26104.1 −− ⋅×= smγ  and 

3
1 0.958 −⋅= mkgγ  for PDMS. 

 

a) Suspension of PDMS incorporated with 40% by volume glass spheres 

 

Using a set of capillary flow experimental data at large shear rates, the parameters of 40% 

PDMS were determined using the inverse problem solution methodologies [Tang and 

Kalyon (2004)]: 16.087600 sPam ⋅= , 0.16=n , Pay 58800=τ , 17.2Pa1sm13-101 ⋅−⋅×=β , 

and 17.2=sb . In the low shear rate range (less than 5 s-1) a second set of parameters 

were found to be applicable [Tang and Kalyon (2004)]: 5.050000 sPam ⋅= , 0.5=n , 

Pay 403=τ , 17.2Pa1sm14-1005.10
−⋅−⋅×=β , 0=κ , and 17.2=sb . 

 

Figure 6 shows a typical solution for the suspension of PDMS with 40% glass for 

pressure, velocity, slip velocity, shear stress under the conditions of 2R=0.0015m, 

L/2R=40, V0=0.01m/s. In the figure, triangles represent slip velocity. The figure also 



 

presents the time history of pressure at the entrance and of velocity at the exit. The 

simulation results indicate that the solution only has a very short transient state and then 

the solution becomes steady. It is seen that the flow is actually a plug flow, that is V=us, 

where V is the average velocity and us is the slip velocity. Over the length of the entire 

tube wall shear stress increases in the axial z-direction. The wall shear stress is always 

greater than the critical wall shear stress at which the transition between the stick and slip 

conditions occurs. 

 

The time-dependent simulations of the flow field for all of the conditions pertaining to 

the flow curve given in Figure 4 were carried out. Over a broad range of conditions the 

typical behavior observed in Figure 6, summarized as fast conversion of the flow 

condition into a steady state, and development of a steady slip velocity at the wall and the 

wall shear stress values always greater than the critical wall shear stress at which the 

transition from stick to the slip condition occurs was observed. The predicted mean 

values of the wall shear stress versus the apparent shear rate values are shown in Figure 7. 

Over a broad range of conditions, except at the lowest shear rates, the simulation suggests 

that the flow would occur under steady state conditions as indeed observed in the 

corresponding experiments (no pressure fluctuations and the extrudate surfaces were 

smooth, i.e., Figure 4). For the lowest  shear rates considered such as around 2 s-1 the 

flow was predicted to be unsteady. This is an important finding and suggests that the 

onset of flow instabilities is predicted for suspensions of PDMS at wall shear stress 

values which are less than the critical wall shear stress at which strong wall slip is onset. 

This is indeed the experimental behavior shown in Figure 4. 



 

 

In the relatively high shear rate range the wall shear stress is greater than the critical shear 

stress with no crossing-over the critical shear stress.  However, in the low shear rate 

range the wall shear stress values are in the neighborhood of the critical wall shear stress 

values and the simulations reveal cross-over from below to above the value of the critical 

shear stress over the length of the die.  

 

What happens if the Navier’s slip coefficient is assumed to be pressure dependent? A 

second set of simulations for the PDMS with 40% by volume glass were carried out using 

the following dependence of the Navier’s slip coefficient on pressure   

 

                                            κββ )/(0 ppa=              (11) 
 
 

and parameters 15.047600 sPam ⋅= , 0.15=n , Pay 40000=τ , 
17.2Pa1sm13-105.30

−⋅−⋅×=β , 3.0=κ , and 17.2=sb . 
 
 

The results shown in Figure 8 are obtained for 2R=0.0025m, L/2R=60, V0=0.0125m/s. In 

the figures, triangles represent slip velocity. The mean velocity values are represented by 

the continuous curves. Steady state is again achieved very fast (Fig 8).  The slip velocity 

values are relatively large. Under such steady state conditions the time-dependent and 

steady values of the wall shear stress at various locations in the cylindrical tube are all 

greater than the critical wall shear stress at which the transition from the stick to the slip 

condition occurs. The mean values of the wall shear stress under steady state conditions 

over the entire set of conditions of the experiments and the corresponding experimental 

values are shown in Figure 9. The predictions and the experiments agree that over a large 

range of shear rates (apparent shear rates are larger than 10), there are no fluctuations in 

pressure and the extrudates are smooth and free of any type of surface irregularities, 



 

suggesting that the flow over the entire range of shear rates occurred free of flow 

instabilities.  Overall, the differences between the predictions of the simulations that use 

the constant or the pressure-dependent Navier’s slip coefficient are not significant. The 

low shear rate region was not probed in these simulations akin to those conditions used to 

generate the results given in Figure 7.   

 

.  

b) Solutions for unfilled PDMS 

The typical results of time-dependent solutions of the Poiseuille flow for PDMS obtained 

for a constant Navier’s slip coefficient are shown in Figure 10. In the figure, at shear rates 

greater than 5 s-1, the parameters collected from the experiments with the higher shear 

rates were used: 15.027000 sPam ⋅= , 0.15=n , Pay 40000=τ , 

26.2Pa1sm11-109.0 −⋅−⋅×=β , 26.2=sb . For shear rates lower than 5 s-1, parameters 

collected from the experiments with the lower shears were used:  [Tang and Kalyon 

(2004)]: 39.017200 sPam ⋅= , 0.39=n , Pay 0=τ , 26.2Pa1sm15-1015.40
−⋅−⋅×=β , 

0=κ , and 26.2=sb . The diameter of the tube, the length over the diameter ratio and the 

initial mean velocity were 2R=0.0025m, L/2R=60, V0=0.001m/s, respectively. In the 

figure, triangles represent slip velocity. The pressure exhibits time-dependence and the 

values of the mean velocity, wall shear stress and the slip velocity at the wall all exhibit 

time-dependence, which are not damped. The periodicity observed here is typical and 

persists indefinitely with no steady state solution reached under shear rates, which are 

greater than 5 s-1.  

 



 

It is interesting to note that the wall shear stress distribution collected at a value of 100 s 

upon the inception of the shear flow from the rest state suggests that the critical wall 

shear stress at which the transition from the stick condition to wall slip occurs is crossed 

multiple times. The transition from the stick to the slip condition appears to generate the 

time dependence of the pressure, and location-dependent values of the mean velocity and 

the slip velocity. The predicted periodicity shown in Figure 10 suggests that the flow 

would not become steady and would exhibit fluctuations in the pressure necessary to 

drive the flow on one hand and distortions in the extrudates caused by the time dependent 

changes in the flow boundary condition at the wall and the location specific va lues of the 

mean flow velocity.  

 

Does the nature of the flow change if the Navier’s slip coefficient is taken to be 

dependent on the pressure?  A new set of solutions was obtained with the following 

parameters for unfilled PDMS and are shown in Figure 11. 15.027000 sPam ⋅= , 0.15=n , 

Pay 35000=τ , 26.2Pa1sm11-109.00
−⋅−⋅×=β , 1=κ , and  sb=2.26. Figure 11 again 

indicates that the wall shear stress oscillates around the critical stress. It also shows that 

slip-stick prevails and governs the flow behavior, such as sometimes the slip velocity 

approaches zero, and sometimes it approaches the cross-section averaged mean velocity, 

thus oscillating between the no slip to unfilled slip (plug flow) conditions.  

 

The simulations were carried out over a broad range of apparent shear rates, i.e., 2-200 s-1. 

The time-dependence of the velocities and the pressure prevailed over almost this entire 

range of apparent shear rates, except in the lowest shear rate range of less than 5 s-1. The 



 

time-averaged values of the predicted wall shear stress values are shown in Figure 12. It 

should be noted again that all of the wall shear stress values shown in Figure 12 for 

which flow instabilities were predicted are very close to the critical wall shear stress at 

which the transition from the stick to the slip condition occurs. Thus, for this entire range 

of apparent shear rates the critical value of the shear stress is encountered at some 

location at the surface of the die and initiates the flow instability mechanism to give rise 

to the observed surface irregularities shown in Figure 2.  However, at the lowest shear 

rate considered, i.e., around apparent shear rate of 2 s-1 and less, steady solutions were 

observed (Figure 12). Under these conditions the wall shear stress values are significantly 

lower than the critical wall shear stress at which strong wall slip is onset in steady 

torsional flow.  

 

 

IV. Concluding remarks 

 

A time-dependent solution of the capillary flow of compressible generalized Newtonian 

fluids subject to wall slip is presented.  The model shows that the critical shear stress, at 

which apparent slip occurs, plays an important role to determine if the capillary flow is 

steady or unsteady. The numerical findings agree with the experimental findings for the 

capillary flow of the two materials of our study, i.e., PDMS and filled PDMS.  

 

Overall, these results appear to confirm our earlier hypothesis (Kalyon et al. (2003) that 

the stability of the wall boundary condition during flow is very important. The critical 



 

wall shear stress at which strong wall slip occurs acts as a boundary. If the flow 

conditions generate wall shear stress values which are in the neighborhood of this critical 

wall shear stress than transitions from the steady to unsteady or from unsteady to steady 

flow occurs. It is also interesting to note that for the filled PDMS a stable wall slip 

condition (with wall shear stress values significantly greater than the critical shear stress) 

prevails over the bulk of the flow curve and the flow in this region is steady. Only when 

the apparent shear rate is sufficiently reduced so that the corresponding wall shear stress 

values approach the critical wall shear stress then flow instabilities are onset. 

 

 For the unfilled PDMS bulk of the flow curve involves wall shear stress values, which 

are in the neighborhood of the critical wall shear stress, and the flow over this broad 

range of shear rates is unsteady. The resulting wall slip condition is not stable with non-

periodic excursions between the slip and stick conditions. The decrease of the shear rate 

to lower than 2 s-1 for unfilled PDMS gives rise to wall shear stress values that are 

significantly lower than the critical shear stress and the resulting stable stick condition 

generates stable flow.  
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  Fig. 5 Flow through a circular tube (Poiseuille flow) subject to wall slip 
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          Fig. 6  Solution for flow of PDMS suspension with 40% by volume of glass 
spheres using   a constant Navier’s slip coefficient. 2R=0.0015m, L/2R=40, V0=0.01m/s. 
In the figure, triangles represent slip velocity.  
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Fig. 7  Predictions for 40% PDMS flows for Navier’s slip coefficient, β ,  equal to a 
constant and not dependent on pressure. Filled symbols – prediction, hollow symbols—
experiment. Squares – 2R=0.0015m, L/2R=40, diamonds – 2R=0.0025m, L/2R=60.   
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Fig. 8 Solutions for  40% PDMS flow with a pressure-dependent slip coefficient. 
2R=0.0025m, L/2R=60, V0=0.0125m/s. In the figure, triangles represent slip velocity. 
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Fig. 9.   Predictions for PDMS suspension with 40% glass, using a pressure-dependent 
slip coefficient. Squares – 2R=0.0015m, L/2R=40, diamonds – 2R=0.0025m, L/2R=60.    
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          Fig. 10 Solution of a pure PDMS flow with a constant slip coefficient. 
2R=0.0025m, L/2R=60, V0=0.001m/s. In the figure, triangles represent slip velocity. 
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Fig. 11 Solution of a pure PDMS flow with a pressure dependent slip coefficient. 
2R=0.0025m, L/2R=60, V0=0.06m/s. In the figure, triangles represent slip velocity. 
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Fig. 12   Predicted shear stress at the wall versus the apparent shear rate for pure PDMS 
Squares – 2R=0.0015m, L/2R=40, diamonds – 2R=0.0025m, L/2R=60.   
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