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Abstract: It is experimentally known that a pressure di¤erence is developed in a gas under contin-
uum conditions contained in a closed capillary tube, the ends of which are maintained at di¤erent
temperatures. However, in contradiction with this experimentally measurable thermomolecular
pressure di¤erence, the use of the methods of irreversible thermodynamics in conjunction with the
Navier-Stokes equations subject to the no-slip boundary condition on velocity leads to the conclu-
sion that there can be no thermomolecular pressure di¤erence in a capillary of macroscopic radius.
It has been proposed that in order to correctly describe slow, nonisothermal �ows, certain Burnett
stress terms, namely the thermal stresses, along with the thermal slip of velocity at the wall, reduce
to the same order as the Navier-Stokes equations and must be accounted for at the Navier-Stokes
level. In this work, the validity of the Onsager reciprocal relations applied to a gas undergoing
nonisothermal �ow is examined, and it is demonstrated that the Onsager relations are not obeyed
when thermal stress and thermal slip e¤ects are accounted for.

Introduction

It has long been known that there exists a class of problems wherein the Navier-Stokes
equations used in conjunction with the no-slip condition on the velocity of the gas at the solid
surface yield predictions inconsistent with experimental observations. An example of such a problem
is the development of a pressure gradient in a capillary tube containing a gas, with one end of the
tube maintained at a higher temperature than the other. This phenomenon was �rst observed in
1879 by Reynolds [1], who termed it thermal transpiration.

The �rst theoretical explanation for the development of a thermomolecular pressure gradi-
ent in the thermal transpiration tube was provided in 1879 by Maxwell [2]. Maxwell made use of the
kinetic theory of gases to derive expressions for the thermal stresses arising in a gas of Maxwellian
molecules (i.e., molecules that are point centers of repulsion, with the repulsive force between two
molecules being inversely proportional to the �fth power of the distance between them), in the
presence of temperature gradients, and an expression for the thermally-induced slip of the gas at its
interface with the solid. However, Maxwell, arguing on the basis that the temperature must satisfy
the Laplace equation, and hence that the thermal stresses derived by him can cause no motion of
the gas, applied the thermal slip condition in conjunction with the incompressible Navier-Stokes
equations to derive an expression for the thermomolecular pressure gradient. A rigorous derivation
of the boundary conditions applicable at the surface bounding a gas through the asymptotic solution
of the Boltzmann equation in the Knudsen layer adjoining the surface is provided in [3].

Further, it is argued by Kogan et al. [4, 5] that the prevalent asymptotic expansions of
the Boltzmann equation in terms of the Knudsen number Kn by the methods of Chapman and
Enskog [6] and Grad [7], which yield the Navier-Stokes equations at O(Kn), are inapplicable to
slow, nonisothermal �ows. The Knudsen number, which is the ratio of the mean free path of the
gas molecules to the characteristic size of the macroscopic body in contact with the gas, may also
be expressed as the ratio of the Mach number to the Reynolds number, i.e., Kn = M=Re : It is now
evident that �ows of small Knudsen numbers can occur in two situations, when the Mach number



is of O(1) and the Reynolds number is large, or when the Mach number is small and the Reynolds
number is of O(1). In the latter case, a reexamination of the scaling that produces the Navier-Stokes
equations at O(Kn) is required.

Speci�cally, the Chapman-Enskog and Grad schemes are based on the non-dimensionalization
of the gas velocity using the speed of sound as the characteristic velocity of the gas [3]. As such,
the resulting equations apply to the �ow of gases at large Reynolds number, whereas for slow �ows,
where the Reynolds number Re � 1; the characteristic gas velocity is in fact the viscous velocity,
given by U = �=a, where � is the kinematic viscosity of the gas and a is the characteristic dimension
of the solid in contact with the gas.

Upon rescaling the terms resulting from the Chapman-Enskog expansion at various orders,
it is found that the thermal stresses, which were previously believed to be at the next level of
approximation, reduce to the same order as the terms in the Navier-Stokes equations and hence
appear alongside the Navier-Stokes viscous stress tensor. These terms correspond to the third and
�fth of the terms derived by Burnett in the third approximation to the velocity distribution function
of the Boltzmann equation [6].

The simultaneous �ow of gas and heat, particularly with regard to �ow in porous media,
is typically modelled by assuming that the global �uxes of gas volume and heat, averaged over
the cross-section of �ow, are each linearly related to the gradients in pressure and temperature
[8, 9, 10]. The coe¢ cients appearing in these linear relations between the �uxes and the driving
forces are assumed to follow the Onsager reciprocal relations, and hence the cross-coe¢ cients are
assumed to be equal. The Onsager reciprocal relations at the global scale, averaged over the cross-
section of �ow, have been derived using the Poiseuille �ow pro�les and the Onsager symmetry
of the Navier-Stokes equations governing the �ow pointwise in each individual pore [11]. Thus,
the applicability of the Onsager reciprocal relations to the �ow rates of gas and heat computed
per unit area of cross-section (henceforth referred to as the global Onsager reciprocal relations in
this context) presupposes that the gas velocity obeys the no-slip boundary condition, and that the
governing hydrodynamic equations possess Onsager symmetry. However, in the present work, we
demonstrate that in the presence of thermal stresses and with the imposition of the thermal slip
condition on the gas velocity under nonisothermal �ow conditions, neither of these assumptions
holds.

The equations of nonisothermal gas �ow

The Burnett thermal stresses found by Kogan et al. [4, 5] to reduce to the order of the
Navier-Stokes viscous stress tensor are given by
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where the constants !3 and !5 depend on the potential of intermolecular interactions among the
gas molecules. This modi�cation results in the following set of equations:
the continuity equation
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and the Navier-Stokes momentum equation modi�ed to include the thermal stresses
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where � refers to the internal energy per unit volume of gas and the stress tensor � is the sum of
the Newtonian stress tensor and the Burnett thermal stresses, � 3 and � 5.

We note that the term associated with viscous dissipation, � :rv, is no longer a quadratic
form. However, there is no violation of the Second Law of Thermodynamics, as Bobylev [12] has
proved that the analogue of theH-theorem still exists, and a nonequilibrium entropy may be de�ned,
having a non-negative rate of production, and which, in the absence of temperature gradients, is
identical to the equilibrium de�nition of entropy with a vanishing rate of production.

The boundary condition on the gas velocity takes the general form

v = �rT � (I� nn) (5)

on the solid surface adjoining the gas, where the slip coe¢ cient � is a constant determined by the
nature of the gas and the solid. The slip coe¢ cient derived by Maxwell has the value
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3

4

�

T
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In general, an inverse relation exists between the density � and the temperature, so that �T =constant,
and as a result, the slip coe¢ cient is constant. A review of various derivations of the slip coe¢ cient
for di¤erent models of molecular interactions among the molecules of the gas and the solid consti-
tuting the wall, based on models of the Boltzmann equation, the moment method and Monte Carlo
simulations is provided in [5].

Thermal stresses and Onsager symmetry

We denote by � the set of thermodynamic variables (�; �;p)T , where � is the internal energy
density and p =�v the momentum density, with v the velocity of the gas. The variables � denote
the variables thermodynamically conjugate to �. In other words,

� =� @S
@�
; (7)

where S is the entropy. The generalized thermodynamic forces conjugate to the �uxes of mass,
energy and momentum are given by
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where P denotes the thermodynamic pressure, h = � + P is the enthalpy per unit volume of gas
and � represents a small deviation from the equilibrium state of v = 0 and constant �; T and �. For
small deviations from equilibrium, the deviations �� satisfy the linear equations
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Onsager�s symmetry theorem [13] states that the matrix L has the symmetry property Ly = �L� ,
where y denotes the Hermitian conjugate of a matrix, and � is the matrix with 1 or -1 along the
diagonal, according as �i is even or odd under time reversal.

It has been found by McLennan [14] that the higher order hydrodynamic equations, such
as the Burnett equations, do not satisfy Onsager�s symmetry theorem. However, under slow, non-
isothermal �ow conditions, the Burnett thermal stresses known to reduce to the order of the Navier-
Stokes equations must be included alongside the Navier-Stokes stress tensor, and the loss of Onsager
symmetry becomes manifest even at the modi�ed Navier-Stokes level. This is proved as follows.
After linearization about the equilibrium state, the hydrodynamic equations, eqs. (2)-(4), become
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The above equations are cast in the form of eq. (11) by expressing the deviations �v, �T and
�P in terms of the thermodynamic forces with the aid of eqs. (8)-(10), resulting in the matrix of
coe¢ cients
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The matrix L does not possess the Onsager symmetry property (whereas the matrix obtained from
the Navier-Stokes equations in the absence of the Burnett thermal stresses does in fact possess such
a symmetry). The origin of this symmetry violation was attributed by McLennan to initial slip,
namely, the di¤erence between the actual initial values of the local thermodynamic variables �, and
the values obtained by extrapolating to zero time the solutions to the hydrodynamic equations,
which are valid only after an initial aging period. The e¤ect of initial slip is now manifest at the
level of the modi�ed Navier-Stokes equations.

A resolution of this symmetry violation by the Burnett equations has been proposed based
on Grad�s 13-moment approximation [15]. However, Grad has also observed that nonuniform heat
�ow, as described by Fourier�s law, gives rise to thermal stresses [7]. The method of Grad does not
suggest a resolution of the symmetry violation that occurs at the �rst order, corresponding to the
modi�ed Navier-Stokes and Fourier constitutive relations, with the inclusion of the thermal stresses
alongside the Navier-Stokes viscous stress tensor.

Under steady, slow or unidirectional �ow conditions, the temperature satis�es the Laplace
equation, and as noted by Maxwell [2], there is no contribution from the thermal stress terms to
the momentum equation. However, the cross-sectionally averaged �ux of gas also depends on the
boundary condition imposed on the gas velocity. We next provide an example of a steady-state
situation in which, owing to the inertial e¤ects being negligible, there is no contribution from the
thermal stresses, and yet, due to the thermal slip boundary condition, the global Onsager reciprocal
relations fail to hold.



Thermal slip and the global Onsager reciprocal relations in porous media

A periodic bundle of identical capillaries arranged parallel to each other constitutes a simple
model of a consolidated porous medium, each periodically repeating unit of which is a single capillary
tube in a rectangular matrix. When a temperature gradient is imposed across the porous medium,
each individual capillary acts as a thermal transpiration capillary. At steady state, there is no heat
exchange between the �uid in the capillary and the matrix, so that the capillary walls are e¤ectively
insulated.

A derivation of the thermomolecular pressure gradient in a laterally insulated thermal
transpiration capillary tube through which a net �ow of gas takes place was provided by Maxwell
[2]. Here, we calculate the cross-sectionally averaged �uxes of gas volume and heat through the
capillary tube. The two ends of the capillary at (L;�L) are maintained at respective temperatures
of (Th; Tc), with Th > Tc , and the corresponding gas densities are �h and �c, with �h < �c: The
radius of the capillary tube, denoted by a, is much smaller that its half-length L.

Since we have that a=L � 1; we make the unidirectional �ow assumption, from which it
follows that

v = vz(r)ez; (16)

where ez is the unit vector directed along the capillary axis from the cold to the hot end, and that
the pressure, temperature, and hence density, vary in the axial direction alone, or in other words,

P = P (z); T = T (z); � = �(z): (17)

The boundary conditions to be applied are the no-penetration boundary condition on v at the
capillary wall, i.e., vr = 0 at r = a, which is consistent with the unidirectional �ow assumption,
and the thermal slip condition, which is most generally given by the expression

vz = �
dT

dz
at r = a; (18)

where � is the coe¢ cient determined by the model of interactions between the gas molecules and
the wall. The momentum equation yields

�

r

d

dr

�
r
dvz
dr

�
=
dp

dz
: (19)

On integrating eq. (19) and imposing the thermal slip boundary condition, eq. (18), together with
the �niteness of the velocity �eld along the axis of the capillary at r = 0, we obtain
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The net mass �ow rate of gas Qg across any cross-section is given by

Qg =

aZ
0

�v � dS; (21)

where the surface element dS in cylindrical coordinates is given by 2�rdrez. On substituting eq.
(20) into the above and integrating, we obtain
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This expression is similar in form to that obtained by Maxwell [2]. However, the coe¢ cient of the
temperature gradient in Maxwell�s expression corresponds to the approximate slip condition derived
by him for a gas of Maxwellian molecules, i.e., eq. (6).

The thermal energy equation
d2T

dz2
= 0 (23)

leads to a linear temperature pro�le given by

T = Tc +
Th � Tc
2L

(z + L): (24)

On integrating the dissipative heat �ux as given by Fourier�s law over the capillary cross-section,
we obtain the rate of �ow of heat,
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The corresponding cross-sectionally averaged �uxes of gas volume and heat are thus
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While the �ux of gas through the tube depends on the pressure gradient as well as the temperature
gradient, no analogous pressure gradient-induced contribution exists for the dissipative heat �ux,
the sole driving force for which is the temperature gradient. As a result, these �uxes do not satisfy
the global Onsager reciprocal relations.

In fact, the application of the Onsager reciprocal relations to this problem leads to the
conclusion that there can be no thermomolecular pressure gradient in a capillary whose radius
is large compared with the mean free path of the molecules [11, 16, 17], or in other words, that a
gradient in temperature cannot induce a pressure gradient or �ow of gas under continuum conditions.
This is contrary to experimental �ndings [18, 19, 20], which reveal that a thermomolecular pressure
gradient is in fact induced under continuum conditions.

Conclusions

We have found that the existence of thermal stresses and thermal slip, or even the existence
of thermal slip alone, leads to a violation of the Onsager reciprocal relations by the resulting
hydrodynamic �uxes.

The reduction in order of Burnett stress terms previously supposed to be O(Kn) higher
than the Navier-Stokes equations has also been found to take place in the presence of concentration
gradients, resulting in concentration-stress convection and the concomitant concentration gradient-
induced slip condition [21]. The inclusion of concentration stresses in the momentum equation
again leads to the loss of Onsager�s symmetry, analogous to the thermally inhomogeneous situation.
Analogous to thermal transpiration, the existence of concentration gradient-induced slip leads to
the development of a pressure gradient in a capillary tube in which a steady state of binary di¤usion
is established [22].



While the inclusion of thermal and concentration stresses in the stress tensor and the
use of the slip condition in the presence of temperature or concentration gradients are rigorously
justi�ed by kinetic theory for the case of gases, no similar justi�cation is known to exist for the
presence of thermal or concentration stresses in liquids. However, Semenov and Schimpf [23] provide
an expression for the thermophoretic mobility of a solvent contained in a closed cell, such as a
�eld �ow fractionation channel, based on the asymmetry of molecular interactions in the presence
of temperature gradients, leading to the development of a macroscopic pressure gradient in the
channel. This situation is analogous to the development of a thermomolecular pressure gradient in
a gas contained in a capillary under nonisothermal conditions, and follows from the solution of the
Navier-Stokes equations in conjunction with an appropriate slip condition. The Onsager reciprocal
relations at the global scale have been used to model the simultaneous �ow of water and heat in
porous media [24]. However, the existence of thermal slip in liquids, if established experimentally,
would invalidate the use of the Onsager reciprocal relations for modeling the nonisothermal �ow of
liquids.
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