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 The theoretical foundation of well-known descriptions of molecular transport 
phenomena, such as the laws of Fourier, Fick and Newton, started with the work of Maxwell 
and Stefan, followed by Chapman and Enskog in their approximate solution of the Boltzmann 
equation for monatomic gases. Later this was extended to multicomponent systems, by them 
and Hirschfelder, Curtiss and Bird, more or less in parallel to the work of Zhdanov and Grad. 
Extensions were made for polyatomic and dense gases. Bearman and Kirkwood set up the 
statistical-mechanical framework for liquid diffusion. The common aspect is the consideration 
of molecular transport as being superposed on the mass-averaged velocity. This limits the 
application to systems with negligible shear. For gaseous counterdiffusion at intermediate 
Knudsen numbers, the species velocities are of the same order of magnitude as the mass-
averaged velocity, and a new description was needed. Recently we found a new solution to 
the Boltzmann equation for multicomponent monatomic gas mixtures, by considering 
molecular fluctuations around the average velocities of each separate species. We proposed a 
generalization of this to polyatomic gases, dense fluids and non-ideal liquids. The resulting 
transport equations contain the species shearing force as one of the elements of the 
momentum balance, next to other well-known terms such as the Maxwell-Stefan diffusive 
friction term. The extended theory enables more general solutions, such as for 
counterdiffusion problems, and also leads to criteria where it leads to the classic equations. 
Replacing the traditional conceptual framework of  multicomponent transport equations in 
which fluxes are the key variables, by the concept that one can solve simultaneous equations 
of motion for the various species, opens fascinating perspectives for new theoretical and 
numerical developments. 
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INTRODUCTION 
 
 In a recent review, titled “Five Decades of Transport Phenomena” Bird1 expresses the 
view: ”By 1954, the science of transport phenomena had been almost completely 
developed…” [1]. The appearance of this wonderful review by one of the founders of the field 
just crossed our submission of a paper to AIChEJ a little bit earlier2. From the material we 
presented there, we have the feeling that “by 2004, the science of transport phenomena has 
entered a necessary new phase of development”. In the paper we discussed, what we shall 
name the “classic” equations of molecular fluid transport phenomena, as they were derived 
from statistical mechanics by Chapman and Enskog3, Hirschfelder et al.4, Bearman and 
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Kirkwood5 and those from irreversible thermodynamics, based on the work of Hirschfelder et 
al. and De Groot and Mazur5. One of the general impressions is that equations used for the 
description of rather simple situations, follow logically from these classic equations. We 
considered the binary counterdiffusion of gases, and Fick’s diffusion experiment of salt in 
water, and found that simplification of the equations from statistical mechanics for gases and 
liquids respectively, led to results which were in conflict with experimental observations. We 
subjected the classic equations from irreversible thermodynamics, to the thought experiment 
of diffusion through a “mesotrumpet”, and showed that the uncoupling of the shear forces 
from the mass transfer driving forces, as dictated by the application of the Curie principle, 
leads to a contradiction with physical reality. A common assumption made in the derivations 
of these equations in both fields is that one can describe the motion of a fluid mixture as that 
of a single fluid. In statistical-mechanics derivations this is worked out mathematically by 
assuming that molecular transport phenomena can be approached as perturbations of the 
equilibrium molecular velocity distribution functions, which are centered around the mass-
averaged velocity. The result is, as it is through assumptions in irreversible thermodynamics, 
that one can obtain a transport equation for the fluid as a whole in terms of the mass-averaged 
velocity, and a momentum balance equation for each species in which the shear seems to be 
absent.  The examples we discussed all have in common that phenomena are considered with 
respect to stationary coordinates, fixed to system walls, and the mathematics show that for 
isobaric transport in all cases the mass-averaged velocity would be zero, which clearly is not 
correct. We derived a new approximate solution to the Boltzmann equation for monatomic 
gases, in which we started with essentially different average velocities for each species. This 
gives a momentum balances for each species, in which a shearing force for that species 
occurs side by side with other well-known terms. We proposed a generalized equation, in 
which thermodynamic non-ideality and bulk viscosity effects were accounted for. With this 
new type of equation we showed that the problems could be resolved. Due to the nature of 
the discussed material, there is a lot of specialized mathematics in our paper, making it not 
easily accessible for everyone interested in multicomponent transport. In the following we will 
therefore in short show some of the features discussed above. Along with a change in the 
mathematical approach we found that we needed a change of the conceptual framework of 
the theory. We have the feeling that this may be very helpful in teaching and studying, and 
attempt to illustrate this in the second part of the paper. 
 
THE CLASSICAL SPECIES MOMENTUM BALANCE  
 
 It is generally agreed, that molecular diffusion for mixtures in the absence of polymer 
history terms, should be described by means of the species momentum balance. However, the 
actual full form of such a balance is hard to find in the textbooks of original workers, such as 
Chapman and Cowling (CC) or Hirschfelder et al. (HCB), as well as of strong advocates of this 
principle, such as Wesselingh and Krishna7. For dilute monatomic gases, the results in CC and 
HCB for the species momentum balance for steady mass transport is given by: 
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with the “driving force”: 
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Here iv  stands for the velocity of i, averaged over its molecular velocity distribution: 
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In eq (2), to the terms in id  as mechanisms are ascribed: concentration diffusion, pressure 
diffusion, and forced diffusion, to which in eq (1) thermal diffusion is added, see Bird, Stewart 
and Lighfoot8 (BSL). HCB et al. present the momentum balance for the mixture as a whole: 
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in which the stress tensor, assuming ideal gas behaviour, can be written as: 
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Here cu  is the mass-averaged velocity, given by: 
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In eq (4) for steady state the first term is dropped, while for many processes the second term, 
the convected momentum, may be neglected. Under these circumstances eq (4) reduces to2: 
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and so one could also view the driving force to be built up of a partial pressure gradient, a 
contribution of the overall shear force, and the external force on i.  
Thus we can either show the shear force in the species momentum balance, or hide it. As we 
have shown, this is a feature that also holds for the generalized transport equation from 
irreversible thermodynamics, as presented by HCB4, Lightfoot9, BSL8. In the Chapman-Enskog 
and HCB approach this is a consequence of the choice of a trial velocity distribution function 
of the form: 
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So in zero order approximation it is assumed that the velocity distributions of each species are 
described by equilibrium Maxwellian distributions centered around the mass-averaged 
velocity of the mixture, and in first order approximation they are assumed to show a relatively 
small deviation from that. The mathematical scheme of the classical solutions then causes the 
mass-averaged velocity to appear in the momentum convection term, and in the molecular 
shear stress terms. In the irreversible thermodynamics treatment, again the concept of a single 
fluid approximation for the mixture is made a priori, and symmetry rules holding for a single 
component fluid are ascribed to the mixed fluid. Next to that, the “Curie-principle” is often 
used, which states that fluxes can only be dependent on (“coupled to”) tensorial forces which 
have the same order, or differ by an even number of orders. Readers are referred to Truesdell10 



 

for a strong view on this principle and a lot of other terminology used by “Onsagerists”. HCB, 
followed a little bit differently by Lightfoot9, carry out a complicated development, including 
the addition of a “zero force”, and obtain a “generalized driving force”: 
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As we have discussed elsewhere, within their framework, this is identical to: 
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and so, non-ideality in the mixture appears as the gradient in the chemical potential, which 
replaces the gradient in partial pressure for ideal mixtures, and the occurrence of the term 

RTct  appears instead of the total pressure p. Krishna11 introduced the notation: 
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As we have shown in our analysis, also in the work of Bearman and Kirkwood on molecular 
transport in liquids, the mass-averaged velocity is again taken as frame of reference. The same 
has been done in developments of plasma transport theory by e.g. Zhdanov12, and many 
others.  

 We have shown that for even very simple experimental situations, the classical theory 
breaks down. One of the examples is the counterdiffusion of two simple gases in a capillary, 
as studied a.o. by Remick and Geankoplis13, as illustrated in Figure 1. At different absolute 
pressures they performed isobaric isothermal counterdiffusion experiments, through a bundle 
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Figure 1. Schematic view of counterdiffusion experiment of He and N2 by Remick and Geankoplis13. Bundle 
of 644 capillaries, 39.1 µm diameter and 9.6 mm length, temperature 300 K. 



 

of 644 glass capillaries of a length of 0.96 cm, and a diameter of 39.1 µm . From eq (8) 
follows for isobaric transport in the absence of external forces: 
( ) 0=⋅∇ ΠΠΠΠ  (14) 
or in simplified notation for a long cylindrical capillary: 
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leading even for slip boundary conditions to 
0=cxu   (16) 

and so the mass-averaged velocity would be equal to zero, which is definitely in contradiction 
to their experiments and those of others such as Graham14. For liquids we found similar 
problems in the description of the salt diffusion experiments by Fick, and we showed that the 
equations stemming from irreversible thermodynamics also cannot provide a good description 
of transport in a channel of given dimensions. As was also observed by Jackson15, the starting 
equations of Mason et al.16 in their development of the dusty gas model have the same 
problem as shown in eq (16). This equation was virtually the same as eq (1), but with a 
slightly different appearance of the factor before the stress tensor2. As we have argued, in 
situations where the shear force term in the momentum balance cannot be neglected, the 
approximation of the mixture as one fluid as a whole, breaks down.  
 

In Figure 2 we show the velocities, at the average composition, of the gases used by Remick 
and Geankoplis, and as we see the species velocities are each larger than the mass-averaged 
velocity. To be precise, these are the velocities averaged over the molecular velocity 
distribution, but also over the capillary cross-section. In the classic texts the peculiar ( )iV  and 

diffusion ( )iV  velocities have been introduced: 
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As we see from the figure, for this system the diffusion velocities would be equal to or larger 
than the mass-averaged velocity, and also physical intuition (or engineering common sense) 
indicates that it is not useful here to speak of the motion of a fluid mixture.  
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Figure 2. Cross-section averaged velocities of He and N2, and mass-averaged velocity, deduced from the 
data of Remick and Geankoplis13, evaluated at 50 mol%. 



 

One of the most confusing aspects of many papers and textbooks is that in equations like eq 
(1) the velocities were replaced by fluxes: 

iii cvN =  (18) 
For us as engineers the term “flux” has a strong association with a flow of matter through 
some given surface area, while a velocity is more associated with a vector at a given point in 
space. The flux notation was also used by Mason et al. in the derivations of the dusty gas 
model16, 17, and they provide one example where silently point values are exchanged for fluxes 
over a cross-section, without any discussion about how to average over the geometry. In 
general, this has been one of the psychological handicaps of much literature in the field; as 
chemical engineers we are only too happy if we have equations with fluxes in them, because 
we can then solve our continuity equations.  
 
THE NEW SOLUTION TO THE BOLTZMANN EQUATION 
 
 From considerations as discussed before, we asked ourselves whether it would be 
possible to use a “traveling Maxwellian” form for each species as a first order trial function: 
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Also, as one can see in problems like the counterdiffusion experiment, we felt that choosing 
the coordinate system based on the mass-averaged velocity was not desirable, and we kept to 
stationary coordinates. Indeed we succeeded in obtaining a first-order approximate solution of 
the Boltzmann equation, and for dilute, monatomic gases the species momentum balance was 
found to be: 
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Here iη  is the partial viscosity of i, and 
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In our derivation the diffusion term resulted directly from the zero-order approximation. In the 
Chapman-Enskog approach in the zero-order approximation the average velocities of all 
components are equal to cu , while in our approach they are different. Eq (20) thus presents 
an equation of motion for each species, and since they are coupled by the diffusion term, it is 
a set of simultaneous differential equations. For each component there appears an individual 
shear term, depending on the individual rate of deformation tensor iS . Molecules i exchange 
momentum with molecules j, as represented by the diffusion term, but they also exchange 
momentum with their own kind, resulting in the shear term. Maxwell18 developed the 
expression for the motion in the x-direction of a species in a binary mixture, his eq (76), 
which can be written as: 
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with 111 vvu −=  the molecular velocity difference with respect to the average velocity of the 
species, and in which the expression for β  depends on the fifth law repulsion potential that 
he assumed. In the transition between his eq (51) and eq (76) he lost the change in convected 
momentum. In (22) the second term represents the variation in partial pressure, while the third 
and fourth term represent the variations in “tangential pressure” or shear stress. In modern 
notation we can write: 
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So, starting with the general viewpoint that the two species have different average velocities 
with molecular fluctuctations around them, his second kinetic theory resulted in a momentum 
balance in which both shear and diffusion terms appear on equal footing. Also, it is notable 
that the diffusion term resulted directly in the form given in eq (22), this contrary to the 
Chapman-Enskog method where starting from variations around the mass-average velocity it 
requires the consideration of the “diffusion velocity’ and a complicated inversion scheme to 
obtain a similar expression. We see that already at that time, the basics for the present new 
equation were there. In his paragraph “Diffusion of Gases”, he states that “if the motion of the 
gases is slow, we may still neglect the tangential pressures” (p. 57). and then presents his eq 
(78), of which the equivalent is: 
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Neglecting shearing terms Stefan19 also presented a statistical collision model, in which the 
species average velocities were assumed different, and he obtained the same result as eq (24), 
so the diffusion term appeared also directly in his solution. In these papers Maxwell and 
Stefan were very much focused on developing a theory, with which the correct temperature-
dependence of gaseous diffusion coefficients could be explained correctly. The measurements 
made by Loschmidt and Maxwell were done in long, wide cylinders, and so indeed shear was 
not very interesting for the description of such experiments. 
For the mixture as a whole we find the momentum balance: 
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This means that the flow of the whole is nothing more than the sum of its parts. It can easily 
be seen that: 

{ } cc
i

iii uuvv ∇⋅≠∇⋅∑ ρρ  (26) 

and 
SS ηη ≠∑

i
ii  (27) 

In general one can thus state that one cannot fully describe the flow of a mixture by means of 
a single Navier-Stokes equation with a mixture viscosity. Only in situations where the average 
velocities of the species are all nearly equal, the inequalities (26) and (27) can be relaxed, and 
then the classic approach holds. (Also for the situation of one component in abundance and 
the other species as trace components). When such conditions are fulfilled, the viscosity of the 
apparent homogeneous mixture is given by: 
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The partial viscosities are dependent upon composition, and are not equal to the pure-
component viscosities. For dilute monatomic gases we have given a formal relation in terms 



 

of Ω -integrals; for practical calculations, also with polyatomic gases, we use a derivate from 
Wilke’s mixture viscosity equation20. Solving for a binary system He-N2, as will be discussed 
in the next section, the problem of transport through a tube of 1 mm diameter and 10 cm 
length under a pressure drop from 1.1 to 1 bar, and equal mole fractions at both ends of the 
capillary, it is found that the velocity profiles become indeed virtually equal, and also that the 
slip velocity is very low. Thus in such measurements it is valid to define the mixture viscosity. 
However, decreasing the capillary diameter to 1 µm  and the length to 1 mm, will lead to 
cross-section averaged velocity differences between the two components of 16%, and 
considerable slip velocities, about 58% of the averaged velocities, as shown in Figure 3.  

 In the introduction of his 1871 paper, Stefan21 stated: “Sollen die wirklichen Vorgänge 
in einem Gemenge berechnet werden, so genügt es nicht mehr, dasselbe als einen 
einheitlichen Körper zu betrachten, wie es die gewöhnliche Mechanik thut, es müssen 
Gleichungen aufgestellt werden, welche die Bedingungen des Gleichgewichtes und die 
Gesetze der Bewegung für jeden einzelnen Bestandtheil in dem Gemenge erhalten.” (“Should 
the real phenomena in a mixture be calculated, then it is not sufficient anymore, to consider it 
as a single body, like the usual mechanics does, equations should be set up, which contain 
the conditions for equilibrium and the laws of motion for every constituent in the mixture”). 
This very clear view has become obscured in time, on one hand by the great success of the 
Chapman-Enskog theory, and on the other hand by developments in the descriptions of fluids, 
such as by the rational mechanics approach of Truesdell22, 23. He states23: “In the Maxwell-
Stefan theory, the constitutive equations for diffusion are not separated from those for fluids, 
although the two have nothing to do with each other in general” (p.2339). This is followed by 
his eq (24) for “a medium”, which is equivalent to eq (4). From the above it is clear, that for a 
mixture the concept of a “fluid” or “medium” as a separate entity from the constituting species 
is not appropriate in general. If one imagines, or visualizes through molecular dynamics, the 
motion of molecules in the counterdiffusion experiment, it is not possible to see what the 
“fluid” would be. As discussed above, in other situations, if all molecules would have 
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Figure 3. Velocity profiles of He and N2 in flow through a cylindrical capillary, at 298 K, as calculated with 
the velocity profile model20. Composition at both ends 5.0=x , pressure at left side 1.1 bar, at right side 1.0 
bar. For the 50 µm radius, the fluxes of N2 (■) and He are virtually equal, for 0.5 µm the velocities are clearly 
different. 



 

approximately the same average velocities and direction, the concept of a fluid seems to be 
applicable. However, then the simultaneous equations of motion will provide results which 
show this, as in the 1 mm capillary in Figure 3. 
 
THE GENERALIZED MULTICOMPONENT TRANSPORT EQUATION 
 
 Based upon the monatomic gas equation we have proposed the following generalized 
transport equation: 
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in which the partial pressure gradient has been replaced by the gradient of the chemical 
potential, and the bulk viscosity term has been added. The total pressure has been replaced by 
RTct . Addition over all components gives the equivalent of eq (25), but now with the bulk 

viscosity effects in addition: 
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For the steady transport of a binary mixture in a long flat channel or long capillary, under 
isothermal conditions, absence of external forces, neglecting bulk viscosity effects and change 
in convected momentum, eq (29) goes over in the equations of the earlier velocity profile 
model 1 (VPM-1)20. For gases this reads: 
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We have solved this set of simultaneous differential equations analytically for the two 
geometries, using Maxwell slip boundary conditions. These will be discussed in the next 
section. For the analytical expressions the reader is referred to2, 20. The result is the velocity 
profile of each species over the radius, as shown in Figure 4. Integration over the cross-section 
gives then information about the cross-section-averaged velocities >< xiv , . We found that we 
could, for this simple type of problem, invert the resulting equations into: 
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The equation resembles the Maxwell-Stefan equation, but in the diffusion term the diffusion 
averaging factor Dg  appears which accounts for the fact that using the difference in averaged 
velocities is not equal to the average of the velocity differences. The last terms represent the 
friction with the wall, and also for the imf  equations follow from the derivation. 
Only after this rather complete result, we make the transition to the species fluxes: 
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and we obtain: 
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In applying this to the continuity equation for the counterdiffusion problem, we have the 
problem that the partial pressures (compositions), the Dg  and the imf  are varying along the 
length of the tube. At specified end partial pressures this forms a boundary value problem, 
which we solved by means of iteration20, 24. In Figure 5 we have plotted the fluxes we 
calculated for the Remick and Geankoplis experiments against the experimental data, and we 
see excellent agreement. In earlier work we have more on basis of engineering intuition, set 
up a model directly for the averaged fluxes, the binary friction model (BFM)24. The above 
strongly supports this model, be it that the averaging factor Dg  was not present there. For 
gases the imf  are numerically equal to those of the BFM, while for liquids the equations are 
identical. 
 
 Depending on the situation, certain terms in the equation of motion may be more 
important than others. For a binary system in a long channel, as described by eq (31) and (32), 
we derived a modulus: 
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with 
8

2
p

p
r

K =  for cylindrical channels, and 
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K =  for flat channels. This modulus can be 

seen as a measure for the ratio of the shear forces and the interspecies diffusive friction forces. 
A small value of ϕ  means that the influence of the shear terms is small, a large value that it is 
dominating. In the case of small ϕ , the collisions between molecules i and j are much more 
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Figure 4. Calculated relative species velocity profiles for capillaries as used by Remick and Geankoplis13. 
Reference velocity is the velocity difference for an infinite medium2. Parameter is the total pressure: (a) 
0.15 kPa, (b) 3 kPa, (c) 40 kPa. 



 

frequent than those between i and i, this tends to bring the average velocities of both species 
close together. For large ϕ , the momentum exchange between faster and slower molecules i, 
and similarly for j, tends to make the differences in average velocities larger. 
We have also presented the equation of energy as follows from the new Boltzmann solution, 
as well as the generalized version2. 

 

ON TEACHING AND STUDYING MULTICOMPONENT TRANSPORT 
 
 When confronted with the host of papers, textbooks and teaching material, students 
and many professors alike, are made aware of the importance of the momentum balance7, 25,  

26. However, the species motion is mainly written in terms of fluxes, and in the balance the 
shear term does not appear. The difference between point and space-averaged fluxes is not 
explained. Elucidations are made, that these results stem from statistical mechanics or from 
irreversible thermodynamics. This, together with the very cumbersome discussions about 
fluxes and forces, and mathematical inversions, has made the teaching of multicomponent 
transport more a descriptive than a logical activity, and from the consumers faith is asked 
rather than physical understanding. Until now. What we would like to show here is a different 
framework for teaching and studying these phenomena. Matters have also been complicated 
because in considering the flow of gases through tubes, the concept of slip velocity is hardly 
discussed in the textbooks on transport phenomena. For that reason we start with considering 
the flow of a single gas first, after which we will discuss the counterdiffusion example, and see 
that we can also apply engineering reasoning to obtain multicomponent transport equations. 
 
Steady isothermal dilute gas transport in a capillary tube: wall slip and Knudsen flow 
 
 As stated above, one of the confusing factors in considerations of gas flow through 
pores and tubes is the phenomenon of wall slip, which is not generally taught in transport 
phenomena textbooks. For flow of a liquid along a wall, such as in a tube, in most common 
situations one may assume the no-slip condition, i.e. the fluid velocity at the wall is equal to 
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Figure 5. Fluxes of He and N2 in counterdiffusion experiment of Remick and Geankoplis13; comparison 
between results from velocity profile model (VPM-1) and experimental values. 



 

zero. As discovered experimentally by Kundt and Warburg in the 1850’s, a dilute gas flows 
like it is slipping at the wall, so there appears a positive velocity along the wall. Maxwell27 
provided an explanation for this, and a corresponding theoretical basis. Molecules which hit 
the wall will not all reflect as like a light ray in a mirror (specular reflection), but also may 
reflect in any possible direction (diffuse reflection). Maxwell pictured this as a surface of 
closely packed spheres. The probability that a molecule will after collisions with the wall have 
the same tangential velocity direction as before the impact is greater than that of the opposite. 
When there is a net flow of the gas to one side, thus more molecules will be reflected in the 
direction of this flow. After collision with the wall atoms, the molecules will travel on the 
average the mean free path, and collide with the molecules in the core of the tube. For the 
core flow this means that it “feels” not a zero velocity at the wall, but a net velocity. 
Mathematically Maxwell  derived expressions for the averaged velocities of both specular and 
diffuse reflection, and for the shear near the wall, leading for a capillary tube to the 
expression, including thermal slip: 
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Here G is the slip modulus (“Gleitmodulus”). Maxwell derived: 
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in which Λ  is the mean free path, and f  is the fraction of molecules which is reflected 
diffusely.  
 
 Now let us make some simplifying assumptions for the equation of motion for the 
single component. Generations of chemical engineers have profited from the wonderful text 
by BSL, in which they showed for a host of interesting situations how one can simplify a.o. the 
Navier-Stokes equations, and derive approximate solutions. The first step in this is that we 
consider special symmetries, with the aid of which we may scratch out certain terms. In the 
case of steady transport, as zero-step we scratch out the time-dependence, since we have 
steady flow, and the external force since we think gravity has hardly any influence. It should 
be noted however, that the assumption, or condition, of steady flow is always dependent on 
the coordinate system chosen. In the present case we naturally choose to fix our coordinate 
system with respect to the capillary tube. We may assume that the flow will be axi-
symmetrical, and there will be no dependence on the angle θ . A bit more complex is the next 
step. Since the capillary is assumed to be very long, we assume that the velocity profile has 
developed, and that we can neglect the velocity changes at the inlet (entrance effects). Also, 
we assume for the same reason, that we have no radial pressure differences, and there is no 
radial velocity. Further we will assume isothermal transport, neglect bulk viscosity effects, and 
change of convected momentum. As is usual, we assume that the axial velocity depends 
much stronger on the radial coordinate than on the axial coordinate. Let us apply this for a 
long cylindrical capillary, and by scratching out terms we obtain: 
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Because of the assumptions, we have now changed the partial differentiation to single 

differentiations, so 
dx
dp

 does not depend on r, and xv  depends much stronger on r, than on x.  

So, now we have a differential equation, and since 
dx
dp

 does not depend on r, we can 

integrate this as: 
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Up to here this is simple standard textbook work. Now we apply the Maxwell slip boundary 
condition: 
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Application of this boundary condition gives: 
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For the total volumetric flow rate we obtain: 
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For the average velocity over the cross-section we have: 
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Now let us consider the slip-modulus. It has the dimension of length, and is related to the 
mean free path Λ . Knudsen28 performed experiments on the flow of various gases through 
capillaries, in which he determined the flux as a function of the pressure difference, at 
different levels of the average absolute pressure. As will be discussed further on, the Maxwell 
relation provides a good fit, but does not describe precisely the measurements at extremely 
low pressures. Fitting to Knudsen’s measurements, we find that: 
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This would correspond to a fraction 65.0=f  for diffuse reflection, which may be compared 
with 5.0=f , as found by Maxwell on the basis of the experiments of Kundt and Warburg 
with air in glass. The mean free path can be expressed as: 
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in which σ  is the collison diameter of the molecules, and n is the number density 
[molecules/m3]. We can relate this to other physical properties by: 
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Here KD  is the Knudsen “diffusion” coefficient; rather it should be called Knudsen flow 
coefficient. It is given by: 
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Again, the factor 0.89 comes from fitting to the experimental data. We substitute eq. (48) into 
(47) to obtain: 
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Next we introduce at this point the molar flux: 
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For the averaged molar flux (so over the cross-section), we find: 
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We can integrate this over the length of the tube L, taking into account that at steady flow the 
molar flux is constant over the length, and then we obtain: 
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in which 

( )LxxLav ppp == += 0, 2
1  (54) 

Equation (38) suggests that if we make a plot of pNx ∆/><  versus the average pressure 

Lavp , , we would obtain a linear relation. In Fig. 6 we have plotted data of Knudsen on the 
transport of H2, CO2 and O2 through capillaries. We used the data he obtained with his #4 
setup, which consisted of a bundle of 25 capillaries of 0.02 m length and 0.0324 mm 
diameter. (We have made a small correction to Knudsen’s value of 0.0333 mm).  
In the first place we see that indeed slip is present, and the no-slip Hagen-Poiseuille equation 
does not work out. We see that we can describe the experimental data very well by the 
Maxwell slip equation (53), with (48) and (49). In the second place we see that the 
experimental data show a somewhat curved line at very low pressures. For completeness we 
give Knudsen’s equation: 
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Here 1a and 2a  are small constants17, 24, 29. For practical purposes we can use (53) with 
sufficient accuracy. 
 
 Summarizing, in this paragraph we have discussed the phenomenon of 
Maxwell/Knudsen slip for gases. We integrated the equation of motion (in simplified form) for 
flow in a capillary with the center boundary condition, and the wall slip boundary condition, 
resulting in the profile of the axial velocity over the capillary radius. After that we  integrated 
the axial velocity over the capillary radius to obtain the flow rate. We  determined the cross-
section-averaged axial velocity from the flow rate and the cross-section area, and from this 
and the molar density, we found the cross-section-averaged molar flux. Integration over the 
capillary length resulted in an expression for the averaged molar flux as depending on the 
outside pressures. 
 
Reverse engineering of the transport equations from the counterdiffusion experiment 
 
 Let us regard the Remick and Geankoplis counterdiffusion experiments of He (1) and 
N2 (2) again. At each end of the capillary they had nearly pure gas. In their experiments they 
varied the total pressure. Now, before going to thoughts about this binary experiment, let us 
consider the transport of single gases in the same equipment. As an example we take for He a 
pressure of 500 Pa at the left, and 9500 Pa at the right. In a second identical set-up we 
perform a parallel experiment with N2, with a pressure of 9500 Pa at the left, and 500 Pa at 
the right. In Figure 7 we present the velocity profiles in the capillaries for these experiments, 
as we calculated them from Eq. (36), at a point where the pressure is 5000 Pa. These profiles 
are the solutions of the single-component equations of motion, with the Maxwell-slip 
boundary condition.  

The equations of motion can then be viewed as simplified versions of the equation of motion 
for each component, and so we can write for components 1 and 2 separately: 
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Figure 7. Counterdiffusion thought experiment in Remick and Geankoplis capillaries, at 10 kPa and 298 K. 
Composition at left end 95 mol% N2, at right end 5 mol% N2. Dotted lines represent the velocities for 
experiments under the same conditions for the pure components, under the same difference in pressure as 
the partial pressure difference in the diffusion experiment, so these would be the velocities when 
interspecies friction would not play a role. Drawn lines are calculated taking this friction into account, 
according to the velocity profile model. 
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For He we have no bulk viscosity term, since it is a monatomic gas, and for N2 we assume that 
the term can be neglected. We have: 
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So, for the separate components we see that there is slip at the wall, and that due to shear the 
velocity at the wall is smaller than that at the center. The dynamic viscosities pure,1η  and 

pure,2η of the two components are different, as they represent the momentum exchange 
between faster and slower molecules of each species, with their respective masses and 
intermolecular attraction potentials. Now, let us do a first step towards the description of the 
Remick and Geankoplis experiment for the mixture. If the molecules of (1) and (2) would not 
influence each other, we would expect the undisturbed velocity profiles of each species, as 
sketched in Figure 7. Of course, this is an unrealistic approach, since molecules (1) and (2) 
will also collide, and since they are on the average moving in different directions, they will 
retard each other. Thus it seems logical to account for this by the introduction of an 
intermolecular friction force in each equation of motion (which is equivalent to the species 
momentum balance). We now make the assumptions as done by Stefan21, be it that he did not 
consider shear. The force on (1) per unit total volume is assumed to be proportional with the 
molar concentration of (1), with that of (2), and with the difference in average velocities. We 
can express this in the following form: 
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Thus in order to solve this binary transport problem, we have to solve the two simultaneous 
equations of motion, with appropriate boundary conditions. The introduction of the effective 
friction between (1) and (2) does not eliminate the shear due to radial differences in velocity 
for each component, and it also does not remove wall slip effects. However, we can expect 
that the molecular velocity distributions of each species are different from the single-
component distributions, due to the interspecies collisions, and so the viscosities that appear 
should be functions of composition, and are not equal to the pure-component viscosities. As 
has been discussed in some more detail before, 1η  and 2η  are partial viscosities.  
 
 The shear terms for each component only include the gradients in the velocity of the 
components themselves; the interspecies collisions are accounted for in the last new term. 
In earlier work we found a simplified set of such equations for transport in circular capillaries 
and flat channels20. The above reasoning leading to eq. (58) may seem to be a bit simplistic in 
nature. However, we are in the good company of Stefan. Moreover, it is in full accordance 
with the isothermal generalized solution eq (20) of the Boltzmann equation, if we neglect bulk 
viscosity. Of course, we can extend (58) also to multicomponent systems.  
As yet, we have not developed analytical solutions for the transport in a capillary for more 
than two components. However, as we have seen that for a binary system the general theory 
developed here fully supports the binary friction model, we suspect that this will also describe 
ternary systems with good accuracy. In the same set-up as used for binary gas diffusion, 



 

Remick and Geankoplis30 also performed isobaric measurements on ternary systems of He, Ne 
and Ar, at different absolute pressure levels. In Figure 8 a comparison is made between the 
data as predicted by the BFM, and the experimental data. Excellent agreement is observed 
again. Introductory numerical solutions of the simultaneous equations of motion for the 
ternary system in a long capillary, gave results which correspond very well with the BFM 
predictions. 

 

Maxwell-Stefan equations in the absence of shear 
 
 With eq (29) as a starting point, a first simplification we can make is to assume that 
acceleration can be neglected. However, it also means that we have to state with respect to 
which coordinate system. If we would travel at steady speed through the diffusion capillary, 
we would definitely see a change of the iv  with time. Thus for such an experiment we define 
the coordinate system as fixed with respect to the capillary. A following simplification could 
be that shear can be neglected. We have to justify this, because it means that there will be no 
velocity gradients. For a drying droplet of a food liquid in a spray dryer, we may assume that 
stresses are minimal, and we choose the coordinate fixed with respect to the droplet center. 
For a wide tube, under non-turbulent conditions, we may expect shear to be much smaller 
than the diffusive friction force. 
A third assumption we could make, is that the change in convected momentum is small with 
respect to the other forces.  
Under these three assumption, we obtain from eq (29): 
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and for the summation over the mixture: 
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Figure 8. Ternary isobaric diffusion experiments of Remick and Geankoplis30 with He, Ne and Ar, in the 
same equipment they used for binary experiments, at 300 K and varying total pressure. Comparison of 
predictions from binary friction model with experimental data. 



 

Eq (60) is very interesting; if we assume that shear does not play a role, or equivalently that we 
have virtually no velocity gradients, it means that we can only have a pressure gradient under 
the influence of external forces. If, as a fourth assumption, we neglect those, such as gravity, a 
system without velocity gradients and external forces would be isobaric. Let us imagine that 
we apply these assumptions to the isothermal transport in a tube, say a Stefan-tube. The fact 
that we assume no radial gradients of the axial velocities, deprives us of the possibility of 
solving the simultaneous equations of motions for water and air. We have left of the equations 
now: 
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What we do in the classic undergraduate problem is assume that the air is stationary with 
respect to the tube, so we fix one velocity. Also, because the system has become isobaric, we 
have only one independent partial pressure left. Thus both in velocities and in partial 
pressures we have reduced the system to one variable less.  Duncan and Toor31 performed 
isothermal ternary diffusion experiments through a wide-bore capillary tube, of 8.59 cm long 
and 2.08 mm diameter, connecting two bulbs of 78 cm3, filled initially with different gas 
mixtures. Again, it is reasonable to assume quasi-steady flow through the tube, and also to 
neglect convected momentum. Making the assumption that shear can be neglected, again 
leads to the consequence of isobaric transport. According to the equation of continuity, we 
have for the mixture as a whole: 
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or for transport in a long tube: 
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and so we would have a constant total flux in the axial direction. For the system of Duncan 
and Toor, the most reasonable assumption to make is then that the total flux equals zero. A 
non-equimolar transport would immediately lead to a pressure difference between the two 
bulbs, which would be taken away very rapidly, because we assume there is no shear. Thus 
we have again decreased the number of independent partial pressures by one, as well as the 
number of independent velocities (or fluxes). When considering diffusion of water and solutes 
during drying of foods, or diffusion of salt in water, molecular volume contraction is small, 
and so we assume equivolumetric transport2, 32. 
 
 For a multicomponent system under the conditions mentioned here, we can then also 
write it in Fickian form for ( )1−n  components: 
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as shown by Taylor and Krishna25. Here we have adopted their notation: 
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The matrix of Fickian diffusion coefficient can be written as: 
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with the elements given by: 

∑
−

≠
=

+=

≠









−=

1

1

11

n

ik
k ik

k

in

i
ii

ijin
iij

xx
B

jixB

DD

DD
 (67) 

They show that the Fickian diffusion coefficients are not symmetrical F
ji

F
ij DD ≠ , contrary to 

the Maxwell-Stefan coefficients.  A further note on this is that for the isobaric equations, we 
have for gases: 
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Thus one of the questions raised by Do33, what the correct shape of the Maxwell-Stefan 
equation is, has been answered. The different forms he discusses are all equal because the 
system is isobaric due to the (implicit) assumptions. 
 
 If we consider a liquid system, neglecting acceleration, change in convected 
momentum, and assume that shear can also be neglected, we can invert eq (59) to obtain: 
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and so, if one likes, one could say that the flux of a component is influenced by the total flux, 
by a gradient in concentration, by the total pressure gradient, by external forces and by the 
temperature gradient. Eq (69) has the advantage that it can be used in the continuity equation. 
However, it only holds under the given assumptions, in the absence of shear. 
 
A steady mixture in a gravitational field 
 
 Let us consider an equilibrium system in a gravitational field; for this the average 
velocity of the species are equal to zero. From the general equation we obtain for an 
isothermal mixture in a system without velocity gradients: 

0ˆ, =+∇−∇− iiiiipTi pVcc Fρµ  (71) 
Addition over all components gives: 
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For a gravitational field: 
gF =iˆ   (73) 

leading to 
0=+∇− gρp  (74) 

Substitution in (71), and using (13) again: 
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For an ultracentrifuge we have: 
r2ω=g   (76) 

and so: 
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What we demonstrate here is that the derivation is much easier than that in textbooks, such as 
Taylor and Krishna25, because the confusing artificial driving force as in eq (12) is not 
introduced. 
 
CONCLUDING REMARKS 
 
 One of the main conceptual points that we have made here, is that solving a 
multicomponent molecular transport problem comes down to the solution of a set of 
simultaneous equations of motion, coupled with the equations of continuity, and where 
needed with the equation of energy. The general equations of motion are momentum 
balances of the forces acting on the amounts of a component per unit volume, and contain 
terms in which the chemical potential gradient, the temperature gradient, interspecies friction 
and intra-species shear all play a role. To solve the set, in general boundary conditions are 
needed. The solution will provide both velocities and concentrations of each component in 
space and time. For steady flow, neglecting change in convected momentum, and for 
negligible shear, a subclass of equations of motion is obtained, the various types of earlier 
presented Maxwell-Stefan equations, in which no “lateral” velocity gradients are present, and 
consequently no boundary conditions at walls can be fulfilled, thus degrading the set to 
( )1−n  simultaneous equations, requiring one additional specification for the velocities 
(fluxes), and containing a condition for the total pressure gradient. It is up to the scientist to 
determine when such assumptions are reasonable. In our framework thus the species 
velocities are the main parameters describing the species motion, and fluxes come in a late 
stage, when everything else is known. In the mentioned review in the introduction, Bird1 
poses question “h” as one of the area of further investigation: “What is the correct velocity 
boundary condition at the tube wall when a homogeneous mixture is flowing through the 
tube? Does the mass-average velocity equal zero, or the molar average, or the volume 
average?” Our answer is that principally there is no possibility of a fluid mixture flowing along 
a wall to remain homogeneous, because there will operate different shearing forces for the 
different species. As we have shown, only when shear plays a very minor role, the concept of 
a homogeneous fluid can be a good approximation. 
 
 Looking back, we feel amazement about the long-time extreme state of confusion in 
the area of multicomponent transport in capillaries and pores. We can summarize this as: “A 
pore is a black hole, from which scientific information about what is going on inside, cannot 
escape.” The engineering community has thus devised a large number of simple 
approximations, such as the Bosanquet equation, the Geankoplis equation, and others, for 
which it was stated that momentum conservation was the basis. However, nowhere the shear 
appeared. Renowned physicists such as Mason et al. have developed the dusty gas model, but 



 

needed some erroneous steps in an attempt to repair the faults of their starting equation. 
Zhdanov and Roldughin have written studies specially devoted to transport in capillaries12, 34, 

35, in which they do not provide a closed solution, probably because their starting equation is 
the same as that of Mason, and so will not lead to sensible results.  Although much interesting 
work remains to be done, such as a more detailed consideration of the slip boundary 
conditions, we have shown that from a general formulation of the equations of motion, 
solutions can be obtained by either analytical mathematics or numerical methods, regular 
tools in chemical engineering. We have also shown earlier that this new attack enables the 
modeling of liquid ultrafiltration in membranes with small pores []. The conceptual change of 
frame also makes many of the classic terms and treatments, such as “osmotic diffusion”, 
“viscous selectivity”, “non-segregative fluxes”, the use of inert porous membranes or solids as 
one of the components, “diffusion velocity”, and “generalized driving force”, obsolete. In our 
opinion the book on the dusty gas model should finally be closed, including the extremely 
confusing arguments on which diffusion coefficient are the “true” ones, and which are 
“augmented” ones26, 36, 37. Just like in thermodynamics, the scientist has to define how many 
phases and components there are; thus for inert membranes with meso-pores the solid phase 
is to be regarded as a wall, and not as a mixture component. For transport between adsorbing 
or absorbing solids, a clear definition of phases is again one of the duties of the scientist 
involved, as is a precise picture of the way the transport in the adsorbed phase is envisioned 
to take place. 
  
 The intrinsic role of the shear force in the equations of motion was found directly 
from the non-equilibrium approximate solution of the Boltzmann equation for dilute 
monatomic gases. The transport theory from irreversible thermodynamics is at present not 
able to describe this relatively simple system. The collisions between atomic molecules show 
microscopic time-reversibility, which is also one of the Onsager starting points. We see it as a 
challenge to reconsider the derivations and see how the two developments can be united.  
The development of the theory around the individual species averaged velocities is crucial for 
obtaining the type of equations of motion including the individual shear terms. In retrospect, it 
is remarkable to see that the pioneers Maxwell and Stefan both used this as their starting 
point, and that the attention for this virtually vanished after the Chapman-Enskog and 
Hirschfelder et al. solutions of the Boltzmann equation. As indicated, Maxwell obtained this 
specific shear force in his derivations for binary diffusion, and we obtained it from our more 
general solution of the Boltzmann equation. It is clear, that we were only able make our 
derivations because of the tremendous mathematical work of the scientists before us. In all 
modesty, we must observe that only after all our work on statistical mechanics had been 
done, we were able to understand the derivations of Maxwell and see the significance of his 
eq (76), which eluded us at earlier readings. We reached the conclusion that a mixture can in 
general not be treated as a single fluid after a lot of thought, and only afterwards on reading 
Stefan again, the meaning of his introductory words became clear to us. Also, it is only now 
that we see the term “equation(s) of motion” in the works of the early scientists in the field, 
when they presented their momentum balances3, 18. Thus, although a lot of our work may be 
regarded as “new”, some basic insights were already present for those to see since over 130 
years.  
 
 With the new transport equation we have extended the tools for rational modeling in 
areas where this was not possible before. Thus we feel that we have contributed to 
broadening the basis of transport phenomena. We have given a modest indication about how 
one could teach and understand molecular transport on a rational basis. Since the theory is 
generally applicable for isotropic systems, it is certainly not limited to pores or tubes, but can 



 

be used to model a large variety of more-dimensional situations. Within the field of chemical 
engineering we can think of CVD- and micro-reactors, transport in nanotubes, but also the 
essentially more-dimensional transport in meso- and macropores in catalysts and adsorbents. 
Possibly the mode of attack can also be of use in plasma physics. Scientifically, reinvestigation 
of derivations for dense fluids, polyatomic gases, and polymeric liquids along the lines we 
have followed, would be very interesting. Thus, in the spirit of Feynman38, when he discussed 
open areas of research, especially devoted to “nanomachines”, we may paraphrase: “There’s 
plenty of room at the bottom of transport phenomena”. 
 
Notation 
 

21,aa  constants, eq (55) [N-1 m2] 
[B] inverse diffusion matrix, eq (67) [m-2 s]  

1C  constant, eq (46) [-] 
2C  integration constant, eq (41) [m s-1] 

c molar concentration [kmol m-3] 
D  Fickian diffusion coefficient [m2 s-1] 

KD  Knudsen coefficient [m2 s-1] 
T
iD  thermal diffusion coefficient [kg m-1 s-1] 
ijD  Maxwell-Stefan diffusion coefficient [m2 s-1] 

id  driving force, eq (1), (2), (12) [m-1] 

iF̂  force per kg i [N kg-1] 
f molecular velocity distribution function [molecules m-6 s3] 
f diffuse reflection fraction  [] 
imf  wall-friction coefficient, eq (33) [m-2 s] 

iG  slip modulus [m] 
g gravitational acceleration [m s-2] 

Dg  diffusion averaging factor [-] 

ih  velocity distribution function in new theory2 [molecules m-6 s3] 
I diagonal unit tensor [-] 

pK  channel permeability [m2] 
k Boltzmann’s constant [J K-1] 
L length [m] 
M molar mass [kg kmol-1] 
m molecular mass [kg molecule-1] 

N,N  molar flux with respect to fixed coordinates [kmol m-2 s-1] 
n molecular density [molecules m-3] 
n number of components [-] 
p  pressure [Pa] 

R gas constant [J kmol-1 K-1] 
r coordinate [m] 
pr  channel radius or width [m] 

S rate of deformation tensor [s-1] 
T temperature [K] 

u,u  velocity [m s-1] 
V  relative velocity, eq (17) [m s-1] 



 

V  specific volume [m3 kmol-1] 
v,v  velocity [m s-1] 
x  mole fraction [-] 
x  Cartesian coordinate [m] 
y  Cartesian coordinate [m] 
z  Cartesian coordinate [m] 
 
 
Mathematical 
 
<> area-averaged  

ia  quantity a , averaged over velocity distribution of i [*] 
 
Greek 
 
β  Maxwell friction parameter, eq (22) [kg-1 m-3 s-1] 

T
iβ  thermal coefficient, eq (70) [kmol m-3] 
ijδ  Kronecker delta [-] 

φ  perturbation function [-] 
iφ  volume fraction [-] 
vφ  volumetric flow rate [m3 s-1] 
ϕ  bulk viscosity [Pa.s] 
ϕ  modulus, eq (37) [-] 
Γ  thermodynamic factor, eq (14) [-] 
γ  activity coefficient [-] 
η  dynamic viscosity [Pa.s] 

iη  partial dynamic viscosity [Pa.s] 
tη  mixture dynamic viscosity [Pa.s] 
Λ  mean free path [m] 
µ  chemical potential [J kmol-1] 
ΠΠΠΠ  stress tensor, eq (5) [Pa] 
ρ  concentration, density [kg m-3] 
σ  molecular diameter [m] 
τ  shear stress  [Pa]  
ω  mass fraction [-] 
ω  angular velocity [rad s-1] 
 
Subscripts 
 
1,2 species 1 resp. 2 
c mass-averaged 
p constant pressure 
pure for pure component 
T constant temperature 
t total 
x,y,z in x,y,z-direction 
 



 

Superscripts 
 
[0] zero-order approximation 
[1] first-order approximation 
D diffusive 
F Fickian 
T transpose 
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