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ABSTRACT 
 

A simple volume-explicit equation of state (EOS) for hard sphere mixtures has been 
developed on the basis of the pressure form of the virial expansion. The resulting equation 
yields the dependence of the compressibility factor on the packing fraction and mole fraction 
for different size ratios within the error estimates of simulation data in most cases. The new 
equation also gives the exact second and third pressure virial coefficients. An advantage of 
such equations of state is the fact that they yield easily the Gibbs energies and consequently 
hard-sphere diagrams. The equations also predict with good accuracy the compressibility 
factor of non-additive hard sphere mixture with a small negative or positive value of non-
additivity parameter (∆).  
 
 
1. INTRODUCTION 
 

Equations of state (EOS) are valuable tools in the calculations of thermodynamic 
properties and phase behavior. EOS that are based on sound statistical thermodynamics have 
more predictive capabilities compared to empirical equations. An important result of the 
theoretical study of fluids is that repulsive molecular forces are dominant at high densities. This 
result motivated researchers to build EOS around accurate repulsive equations. Examples of 
such EOS are the works of Chien et al. [1], Dohrn and Prausnitz [2] and Tao and Mason [3].  
  

The most commonly used repulsive equation is that of hard spheres due to Carnahan 
and Starling [4]. This equation is explicit in pressure as most EOS are. In chemical engineering 
calculations, the pressure and temperature are the usually specified variables. This makes 
pressure-explicit equations inconvenient to use due to the added numerical procedure to find 
the correct volume root. It is therefore desirable to have a volume-explicit EOS that expresses 
the compressibility factor in terms of the independent variables pressure, P and temperature T.  
 

It is the objective of this work to develop simple volume-explicit equations for mixtures of 
hard spheres that overcome these limitations. An advantage of such equations of state is the 
fact they yield easily Gibbs energies of the hard sphere mixtures and consequently the hard 
sphere phase diagram. The study of the phase behavior of the hard sphere systems is of both 
theoretical and practical interest and several papers have made clear this fact [5,6]. 
 

The developed equations of state will be tested against molecular dynamics simulation 
data of both additive [7] non-additive [8] mixtures of hard spheres over a wide range of size 
ratios, packing fractions and compositions.  
 



2. THEORY 
 
2.1 Equations of state 
 

In an earlier work [9], two forms of volume explicit equations of state for hard spheres 
were proposed. They are reproduced below: 
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The constants in eq. 2 have been obtained by equating the first seven virial coefficients 

from the equation to the exact numerical values as reported by Janse van Rensburg [10]. The 
resulting values are: 
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The reduced pressure, ℘ is defined as: 
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where υ  is the molar volume of spherical molecule with diameter σ and NA is the Avogadro’s 
number.  
 

Both equations 1 and 2 give the exact second and third virial coefficients. Higher 
coefficients up to the eighth are represented with a maximum error of 1.4% by eq. 1. While eq. 
2 predicts the eighth virial coefficient with only 0.07% error, compared to 15% for the common 
Carnahan-Starling equation [4]. 
 
2.2 Mixtures of Hard Spheres 
 

It is our aim to generalize equations 1 and 2 to be used for mixtures of hard spheres. 
We will again make use of the virial coefficients; however the mixture pressure coefficients will 
be required. The mixture virial coefficients for hard molecules depend on both the composition 
and the size of the components. To start with, we generalize the equations to the form: 
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where the mixture reduced pressure, ℘m is defined as: 
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For hard spheres, the second and third density coefficients are known exactly [11]. For 

additive hard spheres, they are written as, 
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where and  are the mixture density and pressure virial coefficients respectively. The 
pressure mixture coefficients are related to the density coefficients. However, it should be 
noted that the second mixture density virial coefficient and that of the second pressure virial 
coefficient are identical { eq. 8 } for additive hard spheres. 
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The second pressure virial coefficient is also expressed as, 
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Note that eq. 11 and eq. 8 are identical. The third pressure virial coefficient can be obtained 
from the density counterpart eq. 9 using the appropriate relationship as, 
 

( )2
12

2
2

'
3, 33 SSSbm −=                                                 (12) 

 
f and h in eq.’s 5 and 6 are composition and size dependent quantities. They are to be 
obtained by expanding the respective equation and comparing the results with the pressure 
virial expansion. The third virial coefficient for eq.’s 5 and 6 leads to eq.’s 13 and 14 
respectively. 
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The next task is to evaluate h. We note that when equations 5 and 6 are expanded in 

powers of pressure, the quantity h appears in the same increasing powers as P. As noted in an 
earlier publication [9], the pressure virial coefficient are polynomials of degree 2(i − 1) in mole 
fractions. To satisfy this requirement, the quantity h has to be a second order polynomial in 
composition. Thus, this leads to 
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For a binary mixture, eq.’s 15, 16 and 17 become 
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then     
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The value of h0 is selected such that it gives a good representation of the compressibility factor 
at high pressure. It was found that a value of h0 =-0.327 reproduces the high-pressure 
compressibility data accurately for eq. 5. While, a value of h0 =-0.351 gives the best 
representation of the compressibility data for eq. 6. 
  

The quantity ℘  is evaluated from the packing fraction of the mixture, y given as m
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Hence, from eq. 5  
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Similarly, for eq.6 
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℘m  can be found by finding the root (℘m ) of the eq.’s 25 and/or 26. 
  
            
3. RESULTS AND DISCUSSION 
  

In Figures 1-3, comparisons were made between the mixture compressibility factors for 
additive hard sphere mixtures. Simulation data of Barosova et al. [7] were compared with 
predictions from our proposed equations 25 and 26. The figures indicate fair agreement 
between the predicted and the simulation results. The accuracy generally declines as the 
packing fraction increases, most especially for the size ratio (σ22/σ11) of 0.3. Furthermore, eq. 
26 appears to predict the simulation better than eq. 25. 
 

Figure 1 shows the variation of the compressibility factor, Z, with composition for a size 
ratio, σ22/σ11 = 0.9 at different packing fractions, y. A good agreement is achieved generally 
between the predicted values and simulation data most especially the predictions of eq. 26. 
The situation is also similar for σ22/σ11 = 0.6 depicted in figure 2 where a good agreement is 
achieved between the predicted values and simulation data at low packing fractions, but the 
predictions begin to worsen at high packing fractions most especially the predictions of eq. 25. 
In figure 3, where comparison for the size ratio of σ22/σ11 = 0.3 is plotted, deviation begins to 
appear similar to figure 2 at the highest packing fraction. From the comparison made in the 
figures, the good predictive ability of the proposed equations is obvious, most especially eq. 26 
for additive hard sphere mixtures. 
 



 
Figure 1: Comparison of mixture models (lines) with molecular dynamics simulations (points for 

hard sphere mixtures with (σ22/σ11 = 0.9). 

 
Figure 2: Comparison of mixture models (lines) with molecular dynamics simulations 

(points) for hard sphere mixtures with (σ22/σ11 = 0.6). 
 



 

 
Figure 3: Comparison of mixture models (lines) with molecular dynamics simulations 

(points) for hard sphere mixtures with (σ22/σ11 = 0.3). 
 
 

Figures 4-7 show comparisons made between the mixture compressibility factors for 
non-additive hard sphere mixtures. These mixtures are characterized by non-additive cross 
collision diameters σij, 
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An earlier reported simulation data [8] were compared with predictions from the proposed 
equations 25 and 26.  
 

Figure 4 shows the compressibility factor versus the packing fraction(density) for an 
equimolar binary mixture with a size ratio of 3 and a small negative value of the non-additivity 
parameter ∆ = -0.05. At low and moderate densities, the two proposed models perform 
extremely well. This is expected as both the two equations give the exact second and third 
virial coefficients. At high densities however, slight errors begin to appear with eq. 25 giving the 
highest deviations. 
 

Figure 5 is similar to figure 4, except that the comparison here is for a small positive 
value of non-additivity ∆ = 0.05. The two proposed equations also perform very well. Slight 
deviations begin to appear at the highest densities. 
 



Figure 6 shows the variation of the compressibility factor with size ratio from 1 to 4 at 
moderate non-additivity of ∆ = 0.2 where x1 = 0.25. The two proposed models show higher 
deviations for small size ratio than for large size ratios. Furthermore, this suggests that the two 
equations are not very good with high non-additivity parameter. 
 

 
Figure 4: Comparison of mixture models (lines) with molecular dynamics simulations 

(points) for equimolar mixtures of hard spheres (σ22/σ11 = 3 and ∆12 = -0.05). 
 

 
Figure 5: Comparison of mixture models (lines) with molecular dynamics simulations 

(points) for equimolar mixtures of hard spheres (σ22/σ11 = 3 and ∆12 = 0.05). 



 
 
 

 
Figure 7: Comparison of mixture models (lines) with molecular dynamics simulations 

(points) for equimolar mixtures of hard spheres ( y=0.2, x1 = 0.25 and ∆12 = 0.2). 



4. CONCLUSIONS 
 
 Volume-explicit equations of state for mixture of hard spheres have been developed 
based on a summation of the pressure virial expansion. The equation accurately predicts the 
dependence of compressibility factor on both composition and packing fraction over a broad 
range of size ratios for additive hard-spheres. Prediction accuracy however tends to worsen at 
high packing fractions. The two proposed models also performed very well in predicting the 
compressibility factor of binary hard sphere mixture with a small negative or positive value of 
non-additivity parameter ∆. However, the equations are not very satisfactory for mixtures with 
large non-additivity.  
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6. List of symbols 
b’m,2 Second pressure mixture virial coefficient 
bm,2 Second density mixture virial coefficient 
b’m,3 Third pressure mixture virial coefficient 
f Composition-dependent quantity 
h Size-dependent quantity 
NA Avogadro’s number 
P Pressure 
℘ Dimensionless pressure 
R Idea gas constant 
T Absolute temperature 
xi Mole fraction of component i 
y Packing fraction 
Z Compressibility factor 
υ Molar molecular volume 
∆  Non-additivity parameter 
σij Collision diameter of molecular pair i,j 
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