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ABSTRACT 
 

The condition under which certain systems may not have a stable liquid phase, instead, 
sublime from the solid to the vapor phase has been the subject of investigations by many. Until 
recently, it used to be thought that any amount of attraction added to a short ranged repulsion 
would give rise to a liquid phase. However, computer simulations, theoretical, as well as 
experimental studies have showed that this is not the case. 
  

By use of Hyper-parallel tempering Monte Carlo (HPTMC) simulation, computer 
simulations were performed to obtain the liquid-vapor co-existence data for square-well (SW) 
fluid with variable interaction range with the view of determining the conditions where the liquid 
state will simply squeeze out. The interaction range (λ) which plays a significant role in giving 
rise to a liquid phase in the phase diagram was varied from 1.21 to 3.0.  
 

The results of the work clearly indicate that the range of temperatures for which the 
liquid is stable shrinks as the interaction range decreases. And for sufficiently short interaction 
ranges, the square-well fluid has no stable liquid phase with a threshold value of λ = 1.24. 
 
 
1. INTRODUCTION 
 

Understanding the phase behaviour of fluids & fluid mixtures is an important subject for 
design of chemical engineering processes such as Absorption, Distillation and Extraction. This 
is because very many chemical engineering activities involve the formation and contact of 
different phases. In mixtures for example, vapor-liquid equilibrium calculations can establish 
the compositions of vapor and liquid phases coexisting with each other (as happens when a 
mixture is boiled), and so this sort of information is ultimately used to design distillation 
columns, boilers and condensers in chemical plants. The tremendous capital involved in 
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collecting experimental data of true phase co-existence has served to make thermodynamic 
properties prediction an ongoing focus of fundamental chemical engineering research. In 
certain instances, it may be necessary to prevent the formation of new phases such as in the 
design of gas pipeline systems where the occurrence of significant amounts of liquid phase 
could block the pipeline with possibly disastrous consequences. Whatever the application 
however, knowledge of thermodynamics of fluids under various conditions is needed by 
engineers. 
 

Although there have been tremendous advances in liquid state physics, the conditions 
that are necessary for the liquid state to occur have received less attention from investigators. 
Existence of a liquid state implies, having a critical point in the phase diagram. It is a general 
knowledge that pure hard sphere system does not have a critical point in its phase diagram, 
which indicates the absence of a liquid state. It has, however, been widely believed that any 
amount of attractive interaction added to the repulsive hard-core will give rise to a liquid state. 
But recent theoretical studies as well as experimental studies on colloid-polymer mixtures 
[1,2,3] suggest very strongly that an attractive potential of sufficient long range is in fact 
necessary for the existence of the liquid state. In fact, lately it has become very clear that 
below a critical range of the attractive interaction the gas–liquid transition of a given substance 
becomes metastable with respect to the fluid–solid transition. This phenomenon was first noted 
in connection with phase transitions in mixed suspensions of colloidal particles and non-
adsorbing polymer molecules by Gast, Hall, and Russell [4]. In such colloid–polymer mixtures, 
the range and the depth of the attractive interaction can be adjusted by the size and 
concentration of the added polymer molecules [5]. Experiments on model colloid polymer 
mixtures have provided conclusive evidence that the topology of the phase diagram is indeed 
determined by the ratio of the radius of gyration of the polymer molecules to the radius of the 
colloidal particles. [2 &3] 
 

Following the work on colloid–polymer mixtures, it was subsequently recognized that 
sufficiently short-ranged attractions could also lead to gas–liquid metastability in molecular 
systems. An example of such a molecular system that has emerged in recent years is the C60 
molecule. Hagen et al. [6] mapped out the phase diagram of C60 using computer simulations in 
which the C60 molecules are represented by spheres interacting via the Girifalco potential [7]. 
They concluded that C60 has no stable liquid phase. Cheng et al., [8] also starting from the 
Girifalco potential, used an integral equation approach combined with molecular dynamics 
simulations to establish the phase diagram of C60. They predicted that the liquid phase is 
stable in a narrow range of temperatures and densities. Subsequent studies have not definitely 
settled the issue [9,10,11]. Altogether, these investigations seem to suggest that C60 is a 
borderline case which may or may not have a liquid phase. The example of C60 has led to 
several systematic studies, both theoretical and numerical to establish the relationship 
between the range of the attractive part of the intermolecular potential and the stability of the 
liquid phase [12-15]. These investigations confirmed that below a critical range of the attraction 
the liquid state becomes metastable. 
 

For the case of solutions of globular proteins, it has been known for quite sometime that 
a liquid–liquid phase separation occurs below the fluid–solid transition, i.e., this liquid–liquid 
phase separation is metastable. Recently, it was realized that a possible explanation for the 
occurrence of this metastable liquid–liquid phase separation is again the fact that the range of 
attraction is small compared to the size of the protein molecule. [16] 



 
All the above studies seem to suggest that an attractive potential of sufficiently long 

range is necessary for the existence of liquid phase. However, estimates for the value of the 
range of the attractions where this change occur differ. [9,15,17]  
 

The goal of this research is to determine through molecular simulation the necessary 
and sufficient condition for a square-well potential to give rise to a (stable) liquid. The results 
will be contrasted with other reported theoretical results if available.  
 
2. MODEL 
 

The square-well (SW) interparticle potential has been used as a simplified model for 
modeling the behaviour of realistic fluids. This simplified potential captures both attractive and 
repulsive interactions with only three parameters. A square-well fluid composed of particles of 
diameter σ that interact with the potential 

 

 (1) 
  
where r is the interparticle distance, λ is the range of the well in units of the hard core diameter 
σ, and ε, the depth of the well. By varying the range of the SW fluid it is possible to have 
different systems represented by the SW ranging from hard sphere to van der Waals fluids 
[18].  
 

Square-well fluids have been extensively studied in the past by statistical 
thermodynamics methods [19,20,21,22,23] and computer simulations [24,24,25,27], often with 
goal of obtaining the structural and thermodynamic properties of the square-well systems. 
Statistical mechanics research on the thermodynamic properties of the SW fluid started with 
the perturbation theory of Barker and Henderson [19]. The analytical results of the expansion 
about the hard sphere state provided the groundwork for much of thermodynamic perturbation 
theory. However, numerical solutions for the Percus-Yevick [20], hypernetted chain [21], and 
mean spherical approximation (MSA) [22] of the Ornstein-Zernike (OZ) all show that a non 
perturbative integral equation approach can provide very good estimates of the properties of 
the square-well system.  

 
Monte Carlo and molecular dynamics simulation results were first reported by 

Rotenberg [24] and Alder et al. [25] for the case of λ=1.5.  Simulations for other values of λ 
have been done by Rosenfeld and Thieberger [26], and Henderson et al. [27]. 

 
Of recent, large amount of Monte Carlo and molecular dynamics simulation data on the 

square-well fluid using various techniques have been published as well, mainly to explore the 
liquid-vapor co-existence.  Vega et al. [18] used the Gibbs ensemble Monte Carlo technique 
(GEMC) to obtain the vapor-liquid phase equilibria of square-well fluids with potential ranges of 
λ = 1.25, 1.375, 1.5, 1.75, and 2. They also determined the dependence of the critical 
constants on λ.  The results of Vega et al. [18] seem to suggest that the SW fluid deviates from 



the universal Ising behaviour for λ = 2. However, their results differ from studies reported later. 
de Miguel [28] for example, confirmed the existence of Ising behaviour for the λ = 2 Square-
well system using a mixed field finite-size scaling simulation within the grand canonical 
ensemble. The thermodynamic scaling Monte Carlo (TSMC) simulations by Brilliantov and 
Valleau [29], and grand canonical Monte Carlo (GCMC) calculations by Orkoulas and 
Panagiotopoulos [30] all lead to the conclusion that SW fluid follows universal Ising behaviour.  
 

In their study of the square-well systems, Elliot and Hu [31] using molecular dynamics 
and isochoric integration also determined the vapor-liquid equilibrium and also reported vapour 
pressures in agreement with previous results of perturbation theory [23].  

 
Kiselev et al. [32] in their study, performed extensive MD and MC simulations for 

square-well fluids over a range of values for λ, and subsequently came up with a crossover 
equation of state (EOS) that yields the exact second and third virial coefficients, and accurately 
reproduces first-order perturbation theory results. 

 
Del Rio et al. [33] using the so called ‘hybrid simulation approach’ determined the 

equilibrium between vapour and liquid in a square-well system with interaction ranges λ = 1.25, 
1.5, 1.75, and 2, by combining chemical potentials calculated via the Gibbs ensemble Monte 
Carlo (GEMC) with pressures calculated by NVT Monte Carlo method. The phase equilibrium 
was determined from the thermodynamic conditions of the equality of pressure and chemical 
potential in the two phases. The authors reported that their results of the hybrid approach are 
of much higher accuracy than those of conventional GEMC simulations [18]. They also found 
results in agreement with the previous reported results of perturbation theory. 

 
Orea et al. [34] obtained the properties of the liquid-vapour interface of square-well 

fluids with ranges of interaction λ = 1.5, 2.0, & 3.0 using MC simulations and square-gradient 
theories that combine Carnahan-Starling equation of state for hard spheres. Their results were 
in good agreement with the surface tension results reported by Singh, Kofke & Errington [35] 
obtained using grand canonical transition matrix Monte Carlo & Molecular Dynamics 
simulation. 

 
 The main purpose of this work is to investigate the effect of varying the range of 
attractive forces on the phase behaviour of square-well by varying the values of λ, the range of 
the well, from 1.2 to 3.0 using the hyper-parallel tempering simulation technique of Yang and 
de Pablo [36] as applied to grand canonical ensemble. Attempts will be made to identify the 
thermodynamic conditions where the liquid state may not be present.  
 
 To date, the authors are not aware of any systematic simulation study to find the 
boundary between stable and metastable liquid-vapor transitions for the square-well fluid. 
Neither is he aware of the use of hyper-parallel tempering Monte Carlo technique applied to 
square-well fluid. However, it should be mentioned that a rough estimate of the threshold value 
has been calculated theoretically to be λ = 1.25 using a simple van der Waals model [37,38] for 
both the fluid and the solid phases. A similar value of λ = 1.25 was found from simple cell 
model [39]. In both cases, the liquid phase disappears as a stable phase as a result of the 
lowering of the vapor-liquid critical temperature when λ was lowered. 
 



2.1 Model Details 
 
 The range of the attractive intermolecular forces in square-well fluid is measured by the 
range of the well, λ. By changing the values of λ, one is able to observe the effect of the range 
of attractive forces on the phase behaviour of square-well and ultimately find the value of λ 
where the liquid phase just simply squeezes out. Figure 1 gives the potential energy as 
function of the interparticle distance.  
 
 
 
 

 
 

Figure 1: Illustration of the square-well potential 
 
 
 
2.2 Simulation Details 
 
 In this work, the hyper-parallel tempering method of Yang and de Pablo [36] has been 
used in the grand canonical ensemble. This method is very effective in overcoming difficulties 
in molecular simulation particularly complex systems at low temperatures, where the 
configurations can get easily trapped in local energy minima, thereby precluding sampling of 
other relevant regions of phase space. The main feature in this technique is that neighbouring 
configurations can be swapped as the simulation proceeds.  An overview of the method for 
grand canonical Monte Carlo (GCMC) as apply to one-component system has been given in 
Chapter 3.  Only specific details are given below. 

 
In any GCMC simulation, the simulation cell volume V, the temperature (T) or the 

inverse temperature, β = 1/kBT and the chemical potential (µ) are specified as input 
parameters to the simulation. The number of particles N and the total configurational energy E 
are allowed to fluctuate, the temperature and the chemical potential span the phase diagram, 
and by tuning their values, transitions can be induced between phases. 
 



 At the start of the simulation, the number of particles as well as the maximum number 
of particles to be used in the simulation is specified. About 512 particles are usually present at 
the start and 2048 is specified as the maximum. More than one test systems can be simulated 
at the same time, as such, about 10-12 test systems were simulated for each chosen range of 
the well.  
  
 In a typical MC cycle, the necessary input parameters are first defined. These are the 
max. # of particles, initial # of particles, # of systems under investigation, # of link cells, # of 
MC cycles, maximum displacement and the reduced volume (125-1000 depending on λ 
values). Other parameters to be specified are the value of the range (λ), inverse temperature 
(βε), chemical potential (βµ) and the co-ordinates of the particle sites. The usual periodic 
boundary condition is then applied and then a check is made to ensure that there is no overlap 
of particles. Link cells are then set and initialized. The cell dimension has to be ensured that it 
is greater than the range of the well (rcell > λ). It was also ensured that the simulation box sizes 
are large compared with correlation length, by choosing the box length L >> σ in accordance 
with ref. [100] to guarantee that the statistical properties obtained are reliable. 
  
 Standard Monte Carlo trial moves are used to locally update the configuration of each 
of the system. Standard Metropolis acceptance-rejection criteria are employed within each of 
the system under investigation. Fluctuations in the particle number occur by means of particle 
insertions and deletions. Similarly, the usual acceptance-rejection criteria in grand canonical 
ensemble are employed. Configuration swaps are also attempted in each cycle with probability 
as given in the original paper of Yang and de Pablo [36]. A total of 107 Monte Carlo steps are 
required to generate the grand canonical density distribution.  
  
 At sub-critical temperatures, the density distribution is characterized by a double 
peaked structure provided the chemical potential is close to the coexistence value. The 
determination of the precise location of a coexistence point is achieved by tuning the chemical 
potential at any given temperature until the areas under the two peaks become the same. The 
co-existing densities of the two co-existing phases then correspond to the mean densities 
under these peaks. 
 
2.3 Pressure Determination 
 

The discontinuity in the square-well potential makes it impossible to determine pressure 
directly from the simulation. Therefore, pressures corresponding to the co-existing phases (ρL 
& ρV) have been calculated using radial distribution function g(r) within virial equation. Since 
there is a discontinuity in the potential, it implies that there is also discontinuity in g(r) at the 
same separations(s). The pressure only depends on the value(s) of the radial distribution 
function at these discontinuities [40]. The equation to be used according to Heyes [40] is:  
 

( ) ( ) ( )(3 321 1
3

P g g )expβ πρσ σ λ λ σ εβ
ρ

+ −⎡= + + − −⎣ ⎤⎦  (2) 

 
where g(σ+) is the value of the radial distribution function at the limit of r → σ taken from right 
inwards, while g(λ-σ) is the value of the radial distribution function at the second discontinuity in 
the potential approached from the left.  



 
2.4 Determination of Critical Points 
 

Scaling laws will be utilized to evaluate the critical properties. The critical temperature is 
evaluated by fitting the calculated ρ – T coexistence data according to the form of the equation 
[41] 

( )l g cb T T βρ ρ− = −  
 
where β ≈ 0.325  is the classical critical exponent (since Ising behaviour has been confirmed 
for these systems [29,30]), b and the critical temperature Tc are calculated from non-linear 
regression. Subsequently, the critical density ρC can be determined using non-linear 
regression based on the law of rectilinear diameters: 
 

( )
2

l g
c cA T T

ρ ρ
ρ

+
= + −  

 
where A and critical density ρC are calculated from the regression. 
 
 
3. RESULTS AND DISCUSSIONS 
 
 Figures 2 to 7 show the frequency histogram of densities obtained using the hyper-
parallel tempering technique implemented in the grand canonical ensemble for square-well 
fluids with potential ranges characterized by λ = 1.25, 1.375, 1.5, 1.75, 2.0, 3.0. Figures 8 to 13 
present the temperature-density plots for the potential range of λ = 1.25, 1.375, 1.5, 1.75, 2.0, 
3.0. Table 1 reports the critical properties of the SW fluid with variable range. Figures 14 to 16 
give the lines of liquid-vapour phase coexistence in µ*-T* space. Figure 17 shows the vapour-
liquid coexistence lines with temperatures scaled with the critical TC. Figures 18 to 22 are 
results for the square-well fluids with λ = 1.21-1.24. 
 
 The discussion of results will be subdivided into two sections. The first section will be 
for λ = 1.25 to 3.0. This range has been the subject of investigation by many authors 
[29,30,31,32,33]. Liquid-vapour transition has been observed in this range of λ. The second 
section will be for λ = 1.21-1.24. 
 
λ = 1.25 to 3.0 
 
 The frequency histogram of densities presented in Figures 2 to 7 are determined using 
the hyper-parallel tempering technique implemented in the grand canonical ensemble for 
square-well fluids with potential ranges characterized by λ = 1.25, 1.375, 1.5, 1.75, 2.0, 3.0. It 
is clear from these figures that for the chosen temperature and chemical potential, the system 
samples configurations of two stable states corresponding to the co-existing vapour and liquid 
phases. The normal conversions were adopted for the reduced density (ρ*=ρ σ3), temperature 
(T* = kB T ε-1), and pressure (P* = Pσ3 ε-1).  
 



 The coexisting vapor-liquid temperature-density coexistence curves for the SW fluids 
are compared in Figs. 8 to 13 with previous reported results obtained with the GEMC method 
[18] and those obtained by the so-called hybrid simulation approach [33]. It can be seen from 
the figures, our densities are generally closer to those reported by Del Rio et al. [33] which 
were calculated using the new hybrid approach than the earlier reported values of Vega et al. 
[18], except for  λ = 1.75 (T*=1.73) where the difference is a bit high. The results of this work 
are in complete agreement with those reported by Orkoulas et al. [30] for λ = 3.00. 
 

 
Figure 2:  Density Histograms f(ρ*) at equilibrium for SW fluid with λ=1.25 obtained from grand 

canonical simulations 
 

 
Figure 3:  Density Histograms f(ρ*) at equilibrium for SW fluid with λ=1.375 obtained from 

grand canonical simulations 
 



 

 
Figure 4:  Density Histograms f(ρ*) at equilibrium for SW fluid with λ=1.5 obtained from grand 

canonical simulations 
 
 
 
 
 

 
Figure 5:  Density Histograms f(ρ*) at equilibrium for SW fluid with λ=1.75 obtained from grand 

canonical simulations 



 

 
Figure 6:  Density Histograms f(ρ*) at equilibrium for SW fluid with λ=2.0 obtained from grand 

canonical simulations 
 
 
 

 
Figure 7:  Density Histograms f(ρ*) at equilibrium for SW fluid with λ=3.0 obtained from grand 

canonical simulations 



 

 
Figure 8: Vapour-liquid T* versus ρ* coexistence for SW fluids of range λ = 1.25. ◊, this work; *, 

Vega et al. [18]; ■, Del Rio et al. [33]; ○ critical point; ∆ lines of rectilinear diameters 
 

 
Figure 9: Vapour-liquid T* versus ρ* coexistence for SW fluids of range λ = 1.375. ◊, this work; 

*, Vega et al. [18]; ○ critical point; ∆ lines of rectilinear diameters 



 
Figure 10: Vapour-liquid T* versus ρ* coexistence for SW fluids of range λ = 1.5. ◊, this work; *, 

Vega et al. [18]; ■, Del Rio et al. [33]; ○ critical point; ∆ lines of rectilinear diameters 
 

 
Figure 11: Vapour-liquid T* versus ρ* coexistence for SW fluids of range λ = 1.75. ◊, this work; 

*, Vega et al. [18]; ■, Del Rio et al. [33]; ○ critical point; ∆ lines of rectilinear diameters 



 

 
Figure 12: Vapour-liquid T* versus ρ* coexistence for SW fluids of range λ = 2.0. ◊, this work; *, 

Vega et al. [18]; ■, Del Rio et al. [33]; ○ critical point; ∆ lines of rectilinear diameters 
 

 
Figure 13: Vapour-liquid T* versus ρ* coexistence for SW fluids of range λ = 3.0. ◊, this work; *, 

Orkoulas et al. [30]; ○ critical point; ∆ lines of rectilinear diameters 



 
 The values of the critical constants estimated from the simulation data are summarized 
in Table 1, and a comparison is made with some earlier results. Our results seem to be in 
somewhat agreement with the earlier reported results [30,33]. The critical temperature and 
density were estimated by fitting the results to the laws of rectilinear diameters and order 
parameter scaling [41] with a critical exponent of β = 0.325. Table 1 also indicate that 
decreasing λ, i.e. reducing the attractive range, shrinks the range of temperatures for which a 
stable liquid phase can be found as result of the decreasing critical temperature, Tc.  
 
 The lines of liquid-vapour phase co-existence in the space of µ*and T* are shown in 
Figures 14 to 16. The chemical potentials were obtained by implementing the equal peak 
weight criterion for the density distribution. 
 
 Fig. 17 shows the vapor-liquid line with temperatures scaled with the critical 
temperature Tc of the corresponding range (see Table 1). The lines of rectilinear diameters 
have also been plotted. This figure gives an excellent view on the effect of decreasing the 
attractive range on the vapor-liquid equilibria. The figure further shows that the vapor side is 
hardly affected by the changes in the attractive range. By contrast, a shift towards higher 
densities is noted on the liquid side of the coexistence curves as the attractive range 
decreases. For sufficiently short range, the system eventually goes into the solid phase and 
becomes unstable. 
 
 
Table 1: Critical properties of the SW fluid with variable range 
__________________________________________________________________ 
λ   TC ρC    
__________________________________________________________________ 
 
1.24 This work 0.7495 0.4084 
1.25 This work 0.7657 0.4030 
 Vega et al. [18] 0.764±0.004 0.370±0.023 
 Del Rio et al. [33] 0.762 0.3960 
1.375 This work 1.2461 0.3112 
 Vega et al. [18] 0.974±0.010 0.355±0.045 
1.5 This work 1.2305 0.3086 
 Vega et al. [18] 1.219±0.008 0.299±0.023 
 Del Rio et al. [33] 1.218 0.3016 
1.75 This work 1.8003 0.2538 
 Vega et al. [18] 1.811±0.013 0.284±0.009 
2.0 This work 2.6463 0.2675 
 Vega et al. [18] 2.764±0.023 0.197±0.026 
 Del Rio et al. [33] 2.691 0.2549 
3.0 This work 9.6865 0.2634 
 Orkoulas et al. [30] 9.87±0.01 0.257±0.001 
  
__________________________________________________________________  
                          
 



 
 

 
Figure 14: Line of liquid-vapour phase coexistence in µ*-T* space for λ = 1.24 & 1.25 

 
 
 

 
Figure 15: Line of liquid-vapour phase coexistence in µ*-T* space for λ = 1.375, 1.5 & 1.75 

 
 
 



 
 

 
 

Figure 16: Line of liquid-vapour phase coexistence in µ*-T* space for λ = 2.0 &3.0 
 

 
 

Figure 17: Vapour-liquid coexistence line with temperatures scaled with the critical TC. 
Symbols: □, λ = 1.25; ◊, λ = 1.5; x, λ = 1.75; *, λ = 2.0; ∆, λ = 2.0 



λ = 1.21 to 1.24 
 
 Using the same techniques already outlined for hyper-parallel tempering implemented 
for grand canonical, simulations were carried out with the view of determining liquid-vapor 
coexistence for λ range between 1.21 and 1.24. 
 
 Figure 18 shows the frequency histogram of densities as determined for square-well 
with potential range λ = 1.24. The double peak distribution indicates the existence of a two 
phase region (vapour & liquid ). However, after examining a very wide range of temperatures, 
similar feature (double peaks) was not observed for λ = 1.21, 1.22, and 1.23 as evidenced in 
Figures 19 to 21. It may therefore be proper to say that λ = 1.24 (not λ = 1.25 which previous 
theoretical studies showed [37,38,39]), is the threshold value below which liquid phase is not 
likely to exist. 
  
 The coexisting vapor-liquid temperature-density coexistence curves for the SW with 
potential range λ = 1.24 are shown in Fig. 22. The reduced critical temperature and density 
have been determined to be 0.7495 and 0.4084 respectively, see Table 1. 
 

The effects of system size have been examined for λ=1.24, very little change was 
observed in the coexistence densities as the system size was varied from 512 to 2048 atoms, 
or as the simulation box length was changed to a bigger number. The density histograms for 
2048 atoms have been plotted in Figure 23. The histograms are very much like Figure 18 for 
512 atoms.  
 

 

 
Figure 18:  Density Histograms f(ρ*) at equilibrium for SW fluid with λ=1.24 obtained from 

grand canonical simulations 
 



 
Figure 19:  Density Histograms f(ρ*) for SW fluid with λ=1.21 obtained from grand canonical 

simulations. (Double Peaks not observed) 
 
 
 

 
Figure 20:  Density Histograms f(ρ*) for SW fluid with λ=1.22 obtained from grand canonical 

simulations. (Double Peaks not observed) 
 
 



 

 
Figure 21:  Density Histograms f(ρ*) for SW fluid with λ=1.23 obtained from grand canonical 

simulations. (Double Peaks not observed) 
 
 

 
Figure 22: Vapour-liquid T* versus ρ* coexistence for SW fluids of range λ = 1.24. ◊, this work; 

○ critical point; ∆ lines of rectilinear diameters 
 
 
 



 

 
Figure 23:  Density Histograms f(ρ*) at equilibrium for SW fluid with λ=1.24 obtained from 

grand canonical simulations (2048 atoms) 
 
 
4. CONCLUSIONS 

 
 The hyper-parallel technique of Yang and de Pablo [36] was used in the grand 

canonical ensemble to determine the phase diagrams of square-well fluids with variable 
interaction range λ, from 1.21 to 3.0. The grand canonical simulations provided  density 
histograms with double peaked distribution, which is the characteristics of a two phase regime, 
for potential range λ = 1.24 to 3.0. However, after examining a very wide range of 
temperatures, similar feature (double peaked distribution) was not observed for λ = 1.21, 1.22, 
and 1.23. It may therefore be concluded that λ = 1.24 (not λ = 1.25 which previous theoretical 
studies showed [37,38,39]), is the threshold value below which liquid phase is not likely to 
exist. 
 
 In the analysis of the vapor-liquid curves of square-well fluids with temperatures scaled 
with the critical temperature Tc of the corresponding range, an excellent view on the effect of 
decreasing the attractive range on the vapor-liquid equilibria was observed. The analysis 
shows that the vapor side is hardly affected by the changes in the attractive range. This could 
be due to the fact that the behaviour is dominated by ideal gas component, given the low 
densities under consideration. By contrast, a shift towards higher densities is noted on the 
liquid side of the coexistence curves as the attractive range decreases. And for sufficiently 
short range, the system eventually goes into high density solid phase and loses stability. 
 



 The results of the work clearly indicate that the range of temperatures for which the 
liquid is stable shrinks as the interaction range decreases. This is because the critical 
temperature and triple temperature lie closer as λ decrease. And for sufficiently short 
interaction ranges, both Lennard-Jones and square-well fluids have no stable liquid phase. 
 
 The effects of system size have been examined in this work. Very little change was 
observed in the co-existence densities as the number of simulation particles was changed from 
512 to 2048 atoms. Similarly, as the simulation box length was changed from L=7σ to L=10σ, 
changes observed on the coexistence densities were also not significant in the range of 
temperatures considered in this study. This, therefore, guarantee that the statistical properties 
obtained in this investigation are reliable. 
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