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Introduction 
 

Orthopaedic biomaterials research has moved into making “smart” tissue engineered materials 
that can be replaced to restore normal function and integrity of bone. Conventional approaches have 
not been able to design and fabricate bone implants that last longer than 15 years once implanted. New 
materials designed to possess biologically-inspired chemistries and nanoscale architectures, which 
mimic native occurrences are anticipated to extend implant lifetime and reduce early failures.  
 

Due to the unique nanoscale properties of some components in bone such as collagen (~300 
nm in length) and hydroxyapatite crystals (~20-80 nm in length, ~4-6 nm in thickness), nanomaterials 
have been proposed as the next generation of improved implant materials [1, 2]. There is increasing 
evidence that osseointegration is promoted on nanostructured surfaces such as ceramics, metals, 
polymers and composites thereof [1-6]. Yet, current orthopaedic materials such as titanium (Ti) do not 
possess desirable nanometer surface features, which is believed to be a reason why Ti sometimes fails 
clinically. The knowledge that cells in vivo interact with nanometer-sized structures led us to study the 
impact of helical rosette nanotubes (HRN), a nanotubular assemblage with biologically-inspired 
chemistries, on bone cell attachment.  

 
Helical rosette nanotubes (HRN) are a new class of organic materials assembled from a single 

bicyclic block featuring the complementary hydrogen bonding arrays of Guanine and Cytosine, the G/C 
motif (Fig 1a) [7, 8]. This building block self-assembles spontaneously in water to form a six-membered 
cycle (called rosette) maintained by 18 H-bonds, which stack up to form a nanotube with a hollow core 
~1 nm across and up to several millimeters long (Fig 1b) [7]. Because of their mechanism of formation, 
these constructs can serve as very stable scaffolds for the synthesis of functional nanotubular 
assemblies with predefined chemical and physical properties. For instance, a variety of functional 
groups suited for different applications can be attached to the G/C motif (in place of lysine in Fig 1a).  
 

       
(a)        (b)  

Figure 1: Building blocks of helical rosette nanotubes (HRN). (a) The G/C motif possesses the Watson-Crick H-
bond donor-donor-acceptor (DDA) array of guanine and acceptor-acceptor-donor (AAD) array of cytosine (left). 
Six GC motifs self-assemble via 18 H-bonds to form the rosette (right). (b) Second level of organization produces 
a stack with a hollow core ~1 nm across and up to several millimeters long. Top view (left). Side view (right) [7] 
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Experimental 
 

This investigation involved seeding osteoblasts (bone-forming cells) on a titanium (Ti) 
substrates coated with HRN. Two HRNs functionalized with different amino acids were investigated: 1) 
lysine (HRN-K1) and 2) arginine (HRN-R1). Detailed experimental methods are outlined in [9]. Briefly, 
Ti were coated with HRN by simple adsorption for 30 min. Osteoblasts were allowed to attach for 1 hr 
after which they were fixed and stained with Hoeschst (for protein studies, either serum or serum-free 
media were used). Five random fields of adherent cells were counted in situ per substrate and 
statistical analysis was performed. All experiments were run in triplicate and repeated 3 times. 
Uncoated Ti served as a positive control while glass served as a reference.  HRN adsorption on Ti was 
confirmed by imaging substrates with atomic force microscopy (AFM). Heated samples of HRN-K1 
were examined by transmission electron microscopy (TEM).  
 
Results and Discussion 

 
Compared to uncoated Ti and glass, there was a statistical difference in the number of 

osteoblasts that adhered on Ti coated with HRN-K1 (Fig 2a) and HRN-R1 (not shown) after 1 hr. 
Preferential cell adherence was comparable in both HRN-K1 and HRN-R1. There was no statistical 
difference between the various HRN-K1 concentrations studied. Fig 2b and 2c show the adsorption of 
HRN-K1 on Ti surface.  

    
            (a)                             (b)          (c) 

Figure 2: (a) Enhanced OB adhesion on HRN coated Ti. Data are mean ± SEM; n=3; *p < 0.01, **p < 0.10 (T-test) 
when compared to uncoated Ti. (b) AFM image shows HRN-K1 formed networks on the Ti surfaces (scan size: 
638nm; scan rate: 2 Hz). (c) Arrow heads on one HRN. Section analysis indicates a height of 3.5 nm, which is 
consistent with the computed diameter of one HRN [7].  
 

Ti was chosen as a substrate because it is one of the currently used orthopaedic implants. The 
HRN utilized in this study were chosen because 1) they are both positively charged and 2) both lysine 
and arginine set the stage for later incorporation of KRSR and RGD peptide sequences on HRN, 
respectively. These sequences are known to enhance bone cell adhesion [9]. In addition, it has been 
shown by in vitro and rat models that lysine and arginine play therapeutic roles in osteoporosis and 
fracture healing [10]. The protein studies show that while proteins are necessary in the heated-HRN-K1 
samples for increased OB adhesion, in the absence of proteins, heated-HRN-K1 still performed better 
than uncoated Ti. Proteins were not necessary for enhanced OB adhesion on unheated-HRN-K1 
coated Ti (showed no difference in the number of adherent OB under both serum and serum-free 
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conditions) (Fig 3a). TEM of a heated sample of HRN-K1 shows the formation of networks, bundles and 
sheets of HRN on the TEM grid (Fig 3b).  

 

     
                   (a)        (b) 
 
Figure 3: (a) Protein study. OB adhesion on HRN-K1 coated Ti under serum and serum-free conditions. Data are 
mean ± SEM; n = 3; *p < 0.1; ** p < 0.05; ***p < 0.01 (T-test) when compared as indicated by bars. (b) TEM of a 
heated sample of 1mg/ml HRN-K1 showing the formation of networks, bundles and sheets of HRN.  
 

The protein studies led us to speculate that HRN may resemble certain properties of proteins 
that when coated on Ti could provide signals for OB adhesion [11]. This data contradicts conventional 
wisdom that proteins are necessary for OB adhesion [12-15] and thus, warrants further studies of HRN 
in bone tissue engineering. Growth factors [16] and/or select bone recognition peptide sequences [17] 
that preferentially attract bone cell adhesion can be tethered to HRN to improve OB adhesion beyond 
those observed here. In addition, temperature, concentration and pH factors, which affect self-assembly 
of these nanotubes, can be manipulated to obtain a viscous and highly moldable hydrogel. This 
property is very well-suited for fabricating three dimensional constructs, which can potentially repair 
bone fractures or act as cell delivery vehicles in cartilage transplant. These avenues are currently being 
investigated.   
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