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Introduction

Recently, we presented a simulation approach to map out the free energy landscape of nucle-
ation.1,2 One of the key ingredients of the approach was to choose a proper system volume
V so that it satisfies the following two conditions due to Nishioka and Pound:3 (1) V is large
enough so that the system can be regarded as statistically independent of its surroundings.
(2) V is small enough that the probability of finding more than one uncorrelated fluctuation
at any instant in the system is negligible. Insofar as nucleation is a rare event that proceeds
by forming a spatially-localized high-intensity fluctuation, we expect that these conditions
are satisfied simultaneously by a wide range of V .

In the case of non-associative fluids, such as Lennard-Jones fluids above the triple
point,the free energy determined by this method exhibits some non-trivial volume depen-
dence. Nonetheless, if nucleation in such a system still proceeds through a spatially-localized
fluctuation, the Nishioka-Pound conditions will be satisfied by a wide range of V . Since the
simulation cell can be regarded as defining the field of vision involved in our observation of
nucleation process, the exact choice of V should have no effect on the observed nucleation
behavior. It is then natural to inquire exactly how V independent nucleation behavior arises
from the apparently V dependent free energy surface. Since nucleation is a dynamical pro-
cess, a part of the answer undoubtedly lies in the dynamical consideration. In what follows,
however, we shall limit ourselves to the free energy consideration alone and show that, by
means of an example, the free energetics relevant to the steady-state nucleation remains
unchanged for a wide range of the system size.

Method

The basic idea of our cluster simulation method is to follow the stochastic evolution of the
system by means of Monte Carlo simulation.1,2 Because of the second condition imposed on
V , the system can be regarded as containing at most a single cluster at any given instant,
which is characterized by a set of properly chosen order parameters x = (x1, · · · , xc). Using
umbrella sampling technique,4 we estimate the probability p∆x of finding the system within
the volume element ∆x = ∆x1 · · ·∆xc in order parameter space taken around x, from which
the free energy W follows:

βW (x; ∆x) = − ln p(x)∆x, (1)

where β = (kBT )−1 is the reciprocal temperature. For ∆x of a finite size, this approach yields
W only for a discrete set of points. If a limit is taken in which ∆x becomes infinitesimally



small, p(x) approaches a value independent of ∆x. Then, it is convenient to introduce

βφ(x) = − ln p(x) (2)

which may be regarded as a continuous function of x. Using this quantity, and adopting a
Kramers type picture,5–7 we found the expression for the steady state nucleation rate Iss:
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Iss = |κ|(2π)c/2−1e−β∆Wss , (3)

where κ is a kinetic prefactor, evaluation of which is not attempted in this work. Wss is
defined as

β∆Wss = β(W ∗ − WA) + ln V − βδw< + ln
√

| det H∆|, (4)

where W ∗ is the value of W at the saddle point of the free energy surface and WA is the
local minimum of the free energy W in the region of order parameter space corresponding
to the metastable phase and we defined

e−βδw<

=
∑

x

<
e−β[W (x;∆x)−WA], (5)

where the sum is over all metastable region of the order parameter space. Finally, Hαβ =
∂2βφ/∂xα∂xβ and H∆αβ = Hαβ∆xα∆xβ.

In Eq. (4), ln V accounts for the entropic contribution to the free energy due to
the translational degrees of freedom of the critical nucleus, δw< is the correction to the
free energy of the metastable phase due to the fluctuation around the local minimum of

the free energy, and ln
√

| det H∆| accounts for both the flux around the saddle point and
the deviation of the steady-state distribution from the equilibrium one. We note that the
entropic contribution to the free energy from the rotational degrees of freedom of the cluster,
which is included in W ∗, is independent of the system size and hence need not be considered
explicitly in the present context.

Results

We calculated W for a truncated and shifted Lennard-Jones fluid with cut-off radius 3 in
reduced units. Following the previous study,2 we employ two order parameters. One is
the number of the particles N in the system and the other is the potential energy per
particle un ≡ βUN/N . The distribution over the latter was binned using the width of
∆u = 0.01 for each bin. Cubic systems of various sizes were subjected to grand canonical
Monte Carlo simulation at temperature T = 0.741 and fugacity z = 0.01. Periodic boundary
conditions were employed. Thus, the system volume not only determines the field of vision
for our observation of nucleation but also places a limit on the wavelength of fluctuation
accessible to the system. This can influence actual nucleation behavior observed in simulation
if the system size is too small, thereby making additional contribution to the expected V
dependence of W .



Table 1: Changes in N , UN , and W upon critical nucleus formation along with the corrections
for the reversible work of critical nucleus formation.

L ∆N ∆UN β(W ∗ − WA) β(W ∗ − WA) + ln V β∆Wss

z=0.014
6 38 −80.80 16.89 22.26 18.96
8 65 −152.5 19.09 25.33 23.76
10 76 −204.3 18.68 25.58 24.81
12 74 −203.8 18.34 25.80 25.07
16 77 −209.4 17.73 26.05 25.34
z =0.016
6 33 −62.30 12.02 17.39 14.46
8 51 −104.2 11.38 17.62 16.82
10 50 −116.3 10.65 17.55 17.13
12 51 −117.1 10.22 17.67 17.33
16 56 −126.7 9.312 17.63 17.45
z =0.018
6 29 −48.36 8.528 13.90 11.43
8 36 −69.84 6.300 12.54 12.51
10 37 −76.45 5.709 12.62 12.66
12 36 −76.74 5.106 12.56 12.70
16 39 −80.38 3.899 12.22 12.57
z =0.02
6 25 −35.91 5.866 11.24 9.345
8 27 −46.65 3.146 9.384 9.744
10 29 −50.78 2.334 9.242 9.738
12 30 −52.64 1.519 8.974 9.659

Table 1 reports the difference in N , UN , and W between the saddle point (W ∗) and
the bottom of the free energy well (WA) corresponding to the metastable state. Results for
L = 16 at z = 0.02 are not included in Table 1 because the free energy surface fails to exhibit
a well-defined saddle point, implying that the droplet forms spontaneously in the system.
Clearly, this choice of the system size is in violation of the second of the Nishioka-Pound
conditions. The translational entropy of the cluster is responsible for the extra stability of
the cluster. The agreement in the estimated values of ∆N or ∆UN using various system
sizes is somewhat modest. This is partly because of the large error involved in locating the
saddle point and the bottom of the free energy well, where W changes only slightly even
for a large change in N or UN . In addition, there is a systematic error for smaller systems
because of the limit they place on the wavelength of fluctuation accessible to the system.
From the Table 1, we see that the value of W ∗ −WA depends rather strongly on the system



size. Moreover, with the exception of L = 6, the translational entropy of the cluster is seen
to account for most of the V dependence.

For L ≥ 10, simulation yields an estimate of β∆Wss practically independent of the
system size, which not only testifies to the robustness of the simulation methodology but
also provides us with some flexibility in choosing V . At z = 0.014, the value of β∆Wss for
L = 8 shows a somewhat large deviation from the results for L ≥ 10, indicating that the
system might be still too small to embrace all the relevant fluctuations at the fugacity value
in question. Interestingly, even the smallest system volume we used (L = 6) yields a quite
accurate estimate of β∆Wss once the fugacity becomes large enough, and hence the critical
nucleus becomes sufficiently small.

Conclusion

To summarize, we mapped out the free energy surface W of vapor phase nucleation for a
truncated and shifted Lennard-Jones fluid. At the temperature we studied, the shape of the
free energy surface depends strongly on the system size V . Nonetheless, free energetics of
steady-state nucleation is shown to be independent of V . The correction terms we introduced
afford direct physical interpretations.
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