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Abstract 

We employ the Gibbs ensemble to simulate gas-liquid-solid equilibrium at the triple-
point of a shifted-force Lennard-Jones system. This is made possible by generating an 
accurate canonical Helmholtz free-energy model of the (defect-free) solid phase. This free-
energy model is generated by a single isothermal-isobaric simulation at a pressure not too 
far from coexistence for which the chemical potential is known. We also discuss the merits 
of our methods, compared to others in the literature, for simulating crystals in confined 
geometries. 

 
Introduction 

There are several ways to determine phase coexistence for a bulk system using 
Monte-Carlo simulation. A popular method1 calculates a free-energy density model for each 
phase at the same temperature along both phase branches in the vicinity of the transition. 
Coexistence is then easily determined by finding the point at which the branches cross. A 
problem with this method is the effort required to calculate the free-energy density models, 
since many simulations and thermodynamic integration may be required. Alternatively, one 
could employ a non-Boltzmann sampling scheme1, 2, or a phase switch approach3, 4, that 
calculates the free-energy difference between the two competing phases under given 
conditions. However, these approaches can also require considerable effort because it is 
usually necessary to repeat these simulations several times in order to interpolate the 
location where the branches cross. In the case of a non-Boltzmann sampling scheme 
considerable effort might also be required to connect each phase with a continuous path in 
order-parameter space. Alternatively, a much larger canonical system that incorporates a 
phase interface can be simulated5, 6. Hence the popularity of the Gibbs ensemble7, 8. Its 
main advantages are that coexisting states are generated spontaneously during a single 
simulation (given reasonable initial conditions) and that relatively small systems can be 
simulated since a phase interface is not required. 
 

Now consider these methods in the context of phase coexistence in confined 
geometries (in slit pores for example). For confined systems it can be considerably more 
difficult to define a suitable thermodynamic integration path that does not cross any first-
order phase boundaries than for the bulk case because of potential surface induced phase 
transitions. Two approaches can be adopted in the case of a non-Boltzmann sampling 
method; either simulate in the grand canonical ensemble or simulate in the isothermal-
isobaric ensemble and employ a suitable method for calculating the chemical potential so 
that a phase diagram can be drawn (chemical potential is identical in bulk and confined 
phases at equilibrium). We are limited to the isothermal-isobaric ensemble if using a phase-
switch method. The Gibbs ensemble has also been applied8, 9 to confined systems. 
 

Now consider fluid-crystalline solid coexistence in confined geometries. Special 
techniques1, 10, 11 are needed to calculate the free-energy density model of the crystal 
phase, and it can be an even greater problem to define the thermodynamic integration path. 
The grand-canonical non-Boltmann sampling approach cannot be used because of the 
problem with defects (discussed later), and the isothermal-isobaric non-Boltzmann and 
phase switch methods can only be used if the chemical potential of the fluid phase can be 
calculated since there are currently no direct methods (that avoid thermodynamic 



integration) for calculating the chemical potential of crystalline solids. The conventional 
Gibbs ensemble method fails for the same reason as the grand-canonical non-Boltzmann 
method, i.e. particle creation/deletion in the crystal phase leads to defects. 
 

The problem with grand canonical ensemble simulation of crystalline solids deserves 
some discussion. Radhakrishnan and colleagues12, 13 have employed umbrella sampling 
(a.k.a. a Landau free-energy method) in the grand canonical ensemble extensively to 
determine fluid-solid coexistence for Lennard-Jones systems in slit pores. They show how 
freezing depends on pore width and fluid-solid interaction strength. However, let us 
consider a crystalline state with Nl lattice positions and Nd defects (either interstitials or 
vacancies) in a grand canonical ensemble. Particle fluctuations can occur only via the 
insertion or deletion of particles. Since the lattice is fixed in this simulation at constant 
volume, V, only fluctuations in Nd can occur. Since the chemical potential is the difference in 
canonical Helmholtz free-energy between states that differ by one particle at constant 
volume, µ = F(N+1,V,T) � F(N,V,T), and only defect fluctuations can occur in the simulation, 
then the chemical potential in their simulation is the chemical potential of defects � not the 
true chemical potential which has a contribution from lattice site fluctuations as well. So the 
work of Radhakrishnan and colleagues is flawed in this respect, i.e. the chemical potential 
in their work is F(Nl,Nd+1,V,T) � F(Nl,Nd,V,T) whereas it should be F(Nl+1,Nd,V,T) + 
F(Nl,Nd+1,V,T) � F(Nl,Nd,V,T). The missing contribution arises from particle fluctuations due 
to phonons, a problem that is not assuaged by analysing finite size effects. The severity of 
this problem depends on the relative magnitude of these contributions. 
 

So, to determine fluid � solid crystal coexistence in the bulk or in confined 
geometries the most sensible options appear to be umbrella or phase switch sampling in 
the isothermal-isobaric ensemble, provided the chemical potential of the fluid phase is 
easily calculated. Here, we show how the Gibbs ensemble can be revived to treat this 
problem as well, at least for pure crystals of the type described above. 
 
Three-phase coexistence and the Gibbs ensemble 

Our method depends on generation of an accurate canonical Helmholtz free energy 
model or the solid phase. This approach is similar to that suggested previously by Mehta 
and Kofke14 except they proposed using a Helmholtz free-energy density model rather than 
a canonical Helmholtz free-energy model. Note that the difference between these two 
approaches concerns finite-size effects. Also, they provided results for gas-liquid 
equilibrium only whereas we calculate three-phase equilibrium at the triple-point of the 
shifted-force fcc Lennard-Jones system15. That is, we use the Gibbs ensemble to simulate 
liquid-gas, liquid-solid and gas-solid phase coexistence where each gas, liquid and solid 
phase is identical (within statistical errors) and the solid phase is perfect, i.e. has no 
defects. 
 

A (NVT) Gibbs ensemble average for a pure system is written1 
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where β  = 1 / kBT is the inverse temperature, N2 = N - N1, V2 = V � V1, ),( VNF  is the 
canonical Helmholtz free-energy for N particles in volume V 
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where rN indicates the positional and orientational degrees of freedom for N particles, 
A(N,V) is a canonical ensemble average 
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where H is the system�s configurational Hamiltonian, and Λ, the thermal de Broglie 
wavelength, is an irrelevant constant in this study. The partition sum 
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normalises the probability of occurrence for each micro-state. 
 

We suggest that for the solid phase ),( VNF  and A(N,V) could be calculated a priori 
for each relevant canonical ensemble, i.e. each N, and the Gibbs ensemble average written 
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where x can be either solid (subscript s) or fluid (subscript f). The Gibbs ensemble 
simulation then proceeds by random intra-box displacements of fluid particles, random 
insertion and deletion moves in the fluid phase box (that are equivalent to inter-box 
transfers in a conventional Gibbs simulation) and random volume exchange moves. Intra-
box moves are chosen and accepted as per the usual selection rules1. If volume exchange 
moves are chosen so that an amount of volume is transferred from one box to the other at 
random with uniform probability on the range �Vmax to +Vmax then they are accepted with 
probability1 
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where ∆V is the change in volume of the fluid box and 
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where the particle centre-of-mass position coordinates are assumed to scale linearly with 
volume in the usual way. Fluid-phase particles are inserted and deleted according to the 
acceptance rule 
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where ∆N is the change in the number of particles in the fluid phase and 
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Clearly, if at equilibrium fs HF ∆+∆ ββ  is rarely sufficiently small then particle insertions or 
deletions in the fluid phase box will be unlikely and the method will fail. This is the case for 
pure hard-spheres where the chemical potential at solid-fluid equilibrium is large and 
positive (estimated from results in reference 16 and any equation of state for the hard-
sphere fluid). It is conceivable that a cavity bias17 or staged insertion18 method might lead to 
useful insertion/deletion acceptance rates for this system. However, for the (shifted-force) 
Lennard-Jones system at its triple-point the chemical potential is negative and so particle 
insertions and deletions should be accepted at a useful rate. 
 

The method of Mehta and Kofke replaces Fs(N,V) in (5) with fs(N/V)V, where fs is the 
Helmholtz free-energy density of the solid phase. However, both methods converge to the 
exact result in the thermodynamic limit. Away from this limit these methods will yield 
different results since they predict different pressures and chemical potentials for the same 
N and V. To leading order the difference in the chemical potential predicted by these 
methods can be shown to be19 
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This difference increases with the inverse of the compressibility and so will be more 
pronounced for simulations where a solid phase, rather than a gas phase, is represented by 
a free-energy model. Since in their work Mehta and Kofke employed a free-energy density 
model for the gas phase this difference could be insignificant. In this work we employ free-
energy models for the solid phase and so the difference might be significant for relatively 
small N.  
 
Calculating the canonical Helmholtz free-energy model 

Our Gibbs ensemble method requires ),( VNF  and A(N,V) to be calculated for each 
relevant canonical ensemble of the solid phase. Since in molecular simulations we are 
forced to set periodic boundaries according to the simulation box shape, the required 
canonical ensembles with fixed V cannot be simulated directly whilst maintaining perfect 
crystal structure using the usual periodic boundary scheme. However, an approximate 
method for calculating the canonical Helmholtz free-energy of each required state of a pure 
system is as follows. By making use of the extensive approximation 
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for extensive quantities Aex, and the intensive approximation 
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for intensive quantities Ain, every (N,V) state can be related to another state with a fixed 
number of particles, Nc, in a volume V Nc / N. This approximation becomes exact in the 



thermodynamic limit. Away from this limit these approximations introduce finite-size errors 
because they pertain to the canonical ensemble and because of periodic boundary 
conditions. For intensive quantities, such as the chemical potential, the leading order 
correction to (12) is of order (1/N) (see equation (10) for example). That is, to reduce finite-
size errors (12) should be replaced by 
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In general 0

inA  is different for each density, ρ = N / V, and can be found by obtaining Ain for 
two or more values of N at the same density. But for small variations of N from Nc these 
corrections are also small. In this work we neglect such corrections on this basis. 
 

In the case of a solid phase Nc can be made equal to mN0 where m is the number of 
unit cells and N0 is the number of particles per unit cell. In this work we make use of the 
probability distribution for states with volume in the infinitesimal range {V,V + dV} in an N-
particle NPT simulation1 
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where µ is the chemical potential. This states that if the chemical potential corresponding to 
the imposed pressure is known then ),( VNF  can be calculated absolutely from the volume 
probability distribution of an NPT simulation. Of course, the problem is that the chemical 
potential of a crystalline solid corresponding to a pressure P close to coexistence is 
generally not known in advance for an arbitrary system, and its calculation via 
thermodynamic integration is lengthy. We will discuss this problem in more detail later. 
 
The triple-point of the shifted-force Lennard-Jones fluid 

We test the above method on the shifted force Lennard-Jones system because; 1) it 
is a simple, well-known model, 2) the chemical potential at the triple-point is known and is 
negative, 3) we can avoid any potential inaccuracy arising from long-range interactions, and 
4) reference results have already been calculated15. The shifted-force potential is given by 
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where the full LJ potential is 
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and ε and σ are the energy and length-scale parameters respectively. 
 

We choose the triple-point temperature determined by Errington et. al.15, T* = kBT / ε 
= 0.56, and perform a liquid-gas Gibbs ensemble simulation, noting the density, pressure 
and chemical potential of each phase. Pressure is calculated from the virial relation1 while 
the accurate method of Smit and Frenkel20 is used to calculate the chemical potential. We 
then perform a solid-phase fcc crystal NPT simulation at the resulting gas-phase pressure. 



The canonical Helmholtz free-energy model is generated by re-arranging (14), choosing a 
suitably small interval of volume, dV = 0.2 σ3, and using (11). We fit a cubic curve to our 
data. The results of this NPT simulation and the fitted canonical Helmholtz free-energy 
model are shown in Figure 1. Also shown is the (canonical) variation of pressure with 
density calculated using two different routes, i.e. the virial relation and the differential of -F 
with respect to V. Good agreement is obtained. This free-energy model is then used in the 
gas-solid and liquid-solid Gibbs ensemble simulations that are performed according to the 
selection rules in (6) to (9). 
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Figure 1. Results of the fcc solid-phase NPT simulation for a shifted-force Lennard-Jones 
system at P = 0.00182ε  /σ3 and βε = 0.56. The circles are Monte-Carlo results for the 
configurational canonical Helmholtz free-energy (F� = F � β-1Nln(Λ3)) and the corresponding 
line is the cubic polynomial fit, i.e. the model. The triangles show the pressure calculated via 
the virial relation while the corresponding line is the same calculated by differentiating the 
canonical Helmholtz free-energy model (with respect to -V). 
 

The results in Table 1 show good agreement with the reference results15 and good 
consistency with each other. The number of particles in the solid phase of each fluid-solid 
Gibbs ensemble simulation rarely deviates by more than 100 from its initial value of 256. 
When combined with (10), where the first and second differentials of pressure with respect 
to density are estimated from the solid phase NPT simulation (see Figure 1), we obtain an 
estimate for the error in β∆µex of about 0.02. This is about the same size as the statistical 
error in our calculation of the chemical potential at gas-liquid coexistence from the gas-
liquid Gibbs ensemble simulation (see Table 1). So we consider the variations in N to be 
sufficiently small that (11) and (12) are valid, at least for our canonical Helmholtz free-
energy model. Of course, the first and second differentials of the pressure with respect to 



density in (10) refer to the infinite-size system, but our canonical estimates based on the 
NPT simulation of the solid phase should be sufficiently accurate to estimate the magnitude 
of finite-size effects. The large errors corresponding to the liquid-solid Gibbs simulation 
result from large and slow fluctuations in the liquid-solid simulation. So this type of 
simulation must be performed for a sufficiently large number of trial moves. 
 
Discussion 

We have shown that fluid-solid equilibrium can be simulated in the Gibbs ensemble 
provided an accurate canonical Helmholtz free-energy model of the solid phase can be 
generated. If the chemical potential of the solid phase corresponding to a given pressure is 
known, or can be easily calculated, then this model is easily generated (with accuracy 
dependent on finite-size effects only) for defect-free solids by a single NPT simulation. For 
greater accuracy two or more NPT simulations can be used to generate leading order 
contributions to finite-size corrections. In principle our approach can also be used for more 
complex systems such as interaction-site models of alkanes, water and so on in confined 
geometries. However, approximations (11) and (12) are useful only for pure systems. 
Further modifications are also necessary if crystals with defects are to be simulated. 
 

Clearly, it is important to be able to efficiently calculate the chemical potential of solid 
phases. Unfortunately, current methods for calculating the chemical potential of crystalline 
solids are cumbersome. We soon hope to present a new, efficient and direct method for 
calculating the chemical potential of crystalline solids. This calculates the difference in 
Gibbs free energy between one system and another system that is larger by an integral 
number of crystal unit cells. This is achieved in what we call a �dual-ensemble� by allowing 
MC moves that switch between these systems and by making use of non-Boltzmann 
sampling. Further, we hope to extend Tilwani�s21 ingenious retiling algorithm to arbitrary 3D 
crystals and apply it to the dual-ensemble to minimise this difference in system size (to 1 
crystal unit cell for bulk crystals). This would then provide an efficient and direct method for 
measuring the free energy and chemical potential of crystalline solids. 

 
Table 1. Results of the gas-liquid (GL), gas-solid (GS) and liquid-solid (LS) Gibbs ensemble 
simulations of this work and the results in reference 15 for the properties of each phase at 
the triple-point (βε = 0.56) of a shifted-force Lennard-Jones model system. The bracketed 
number at the end of each result for density, pressure and chemical potential is the error to 
1 s.d., while the bracketed number at the end of each entry for �# Moves� is the number of 
rejected trial moves at the start of each simulation. µ� = µ � β-1ln(Λ3) is the configurational 
chemical potential. 
Phase Density (σ-3) P / ε  (σ-3) µ' / ε # Moves 
Gas (GL) 0.00336(9) 0.00182(6) -3.23(2) 390(5) 
Liquid (GL) 0.8152(5) 0.001(2) -3.21(2) 390(5) 
Gas (GS) 0.00342(5) 0.00184(2) -3.22(1) 4(1) 
Solid (GS) 0.9362(5)   4(1) 
Liquid (LS) 0.810(7) -0.05(9) -3.25(7) 495(5) 
Solid (LS) 0.933(8)   495(5) 
Gas15 0.00334 
Liquid15 0.815 
Solid15 0.936 

0.0018 
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