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 Several modern approaches attempting to predict thermodynamic properties of fluids 

have emerged as computational power has increased.  Some involve computations of isolated 
molecules to determine surface charge densities (Klamt, 1995) and, thus, preferable molecular 
interactions for use in a statistical framework (Lin and Sandler, 2002; Klamt et al. 2002).  
Others involve detailing the dynamics of molecular interactions using a combination of 
functional group interaction schemes with available internal molecular degrees of freedom 
(Jorgensen et al., 1984; Martin and Siepmann, 1998; Chen et al., 2001).  A few avoid the 
computations altogether and continue to correlate thermodynamic properties to a lattice-fluid 
model for pure species and mixtures (Sanchez and Lacombe 1976, Taimoori and Panayiotou, 
2001).  All these models attempt to describe macroscopic behavior using only slightly different 
vehicles within a very similar statistical approach.   

 
This work uses the benefits of group-contribution methods (consideration of a smaller 

number of intermediate-sized entities) in a multiscale model of thermodynamic properties of 
fluid systems.  A Gibbs ensemble lattice-fluid is derived assuming that molecules occupy 
multiple lattice sites.  Computational chemistry, Atoms in Molecules (AIM) theory (Bader, 1990) 
and associated software (AIMPAC) are used to find the electron density profiles of a molecule 
and to calculate rigorous electrostatic and structural properties for functional groups.  These 
properties are used in a functional group potential energy model to describe interactions 
between entire molecules through the interactions of the smaller functional groups.   

 
In the past, mixture system properties have been successfully represented by lattice-

fluid models that correlate molecular-specific or global parameters to a set of data.  This work 
attempts to predict the excess Gibbs energy of several binary mixture systems (n-propanol/n-
butanol, n-propanol/hexane, pentane/ethanol) without correlating model parameters to the 
experimental vapor/liquid equilibrium data. 

 
Lattice-Fluid Model 
 The lattice on which the molecules of a fluid system are modeled derives from Knox and 
coworkers (1984, 1987).  The partition function is modified in this work to include the effects of 
vacancies on the system volume.  The independent variables of the system therefore become 
temperature and pressure, and the system is described using the Gibbs partition function 
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where athW  is the number of ways the system can be arranged assuming all interactions are 
equivalent, n  is the number of different molecular species in the system, iz  is the number of 
contacts on molecule i , ib  is the volume occupied by a molecule or a vacancy, iN  is the 
number of molecules of species i , if  is the molecular partition function of species i , ijN  is the 
number of interactions between species i  and j , ijε  is the interaction energy between species 
i  and j , and I  is the total number of interactions in the system.    
 
 To recover the most probable state of the system, the maximum of the Gibbs partition 
function with respect to all interaction numbers ijN  and number of vacancies 0N  must be 
found.  This yields a system of nonlinear equations called the quasi-chemical equations 
(Guggenheim, 1952).  The numbers ijN  are found to be related to the interaction energies by 
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The quantity in the parentheses is regularly referred to as the interchange energy.  
  

The quasi-chemical equations for the Gibbs ensemble is a generalization to the 
equations that govern a system with no vacancies 

 ( )0 0 0 0
1

1 1
n

i j j ij
ji

A Aθ ψ θ ψ
ψ =

= + − Θ∑  (1.3) 

where 0θ is the surface area fraction of vacancies, iψ  is the residual activity coefficient of 
molecule i , and iΘ  the surface area fraction of species i  in a system with no vacancies.  If the 
number of vacancies is set to zero, the quasi-chemical equations reduce to those for a 
systems with a fully occupied lattice, such as those described in earlier works (Guggenheim, 
1952; Kehiaian et al., 1978; Knox et al, 1984; Knox, 1987; Taimoori and Panayiotou, 2001; 
Klamt et al., 2002). 
 
 The equations presented above describe interactions of entire molecules.  The model is 
able to consider systems where functional group properties and interactions are the entities of 
interest.  
 
 Minimizing the partition function with respect to the number of vacancies results in the 
equation of state for the system 
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This depends on the choice of the athermal ways function.  If the Flory expression for the 
athermal ways function within a pure species (Martinez, 1995) is used, equation (1.4) becomes 
 ( ) ( ) ( )0 0 0 0ln 1 1 1 lnpb kT rb V rb r V s ψ= − − − − −  (1.5) 
where r  is the number of lattice sites occupied by the molecule and s  is the average number 
of contacts per lattice site, whether occupied or unoccupied.  This equation is related directly to 
the result of Taimoori and Panayiotou (2001), derived from a slightly different approach. 
 



 In the system of quasi-chemical equations (1.3) and in the equation of state (1.4), 
parameters describing structural properties ( ir  and iz ) and energetics ( ijε ) exist.  This work 
attempts to find these molecular-scale quantities through theoretical and computational means. 
 
Structural and Electrostatic Properties of Functional Groups: Atoms in Molecules Theory 

To determine fundamental properties for atoms and groups, AIM theory is used.  The 
properties of these atoms are theoretically found to be additive, therefore these atoms can be 
assembled into functional groups with known properties.  The volume of a group, V , enclosed 
by bordering groups and the 0.001 au isodensity surface (Bader et al., 1987) is used to define 
how many lattice sites a functional group occupies.  The exposed surface area, exA , is the size 
of the enclosing 0.001 au isodensity surface and is used to determine the number of 
interactions in which a functional group can participate.  The average distance, denoted as 
avgr , from the location of the center of the functional group (location of the heavy atom) to the 

exposed surface area is used to determine the extent of the functional group electron density.   
 
Table 1. Global Model Parameters 
Parameter Value Description Origin 

10.0 cm3/mol Volume of vacant lattice site in 
EoS model 

AIM volume of neon 0b  

25.7 cm3/mol Volume of vacant lattice site in 
VLE model 

AIM volume of methane 

interactiona  0.071 nm2 Area occupied by one 
interaction 

Klamt et al., 1998 

  
Electrostatic properties of functional groups are also defined under AIM theory.  A 

partial charge is assigned to the functional group by integration of the electron density within 
the partitioned space.  The polarizability of a group, α , is also quantifiable by calculating 
changes in the group’s dipole moment to orthogonal electric fields (Bader et al., 1992).  Higher 
order electrostatic properties, such as dipole moment vector and quadrupole moment tensor, 
are definable through AIM but are not used in this work.  AIM properties for the functional 
groups within the molecule are found using the AIMPAC integration software available on the 
internet.  Functional group definitions have been designed around united-atom models 
(Jorgensen et al., 1984; Martin and Siepmann, 1998; Chen et al., 2001). 
 

An example of functional group properties for molecules in a mixture system of interest 
is presented in Table 2.  Groups with the same definition are assumed to be different unless 
there are strict symmetries.  Calculations exceeding error tolerances are written in italics; these 
values are estimated by considering the property along a series of similar molecules.  All 
values are given in atomic units. 
 
Table 2. AIM properties for n-propanol and n-butanol 
 n-propanol n-butanol 
 CH3 CH2 CH2 O H CH3 CH2 CH2 CH2 O H 
q  0.014 0.048 0.476 -1.123 0.585 -0.014 0.042 0.032 0.477 -1.122 0.584
α  13.8 11.7 10.8 7.5 1.1 14.3 11.6 11.7 11.3 7.3 1.1 
V  218.4 158.0 151.3 125.9 22.33 222.1 156.0 157.1 151.3 125.8 22.34



exA  138.7 90.10 84.36 74.99 22.72 144.1 83.57 84.48 83.75 75.30 22.50

avgr  4.174 4.230 4.203 3.550 2.430 4.184 4.266 4.284 4.203 3.552 2.428
 
Interaction Model: Functional Group Interaction Energies 

An interaction energy model is being developed to take advantage of the molecular-
scale properties found for species in the systems of interest.  For each pair of functional 
groups, the calculated AIM structural and electrostatic properties are used to evaluate 
appropriate energies for the resulting pair-wise interactions. 
 

A similar work to determine the interaction potential curves for functional groups has 
been conducted by Siepmann and coworkers (1995, 2001), referred to as Transferable 
Potentials for Phase Equilibrium (TraPPE).  The interaction functions of this work include the 
same effects as those in the TraPPE force field: a repulsion contribution, a dispersion 
contribution and a Coulombic contribution.  A quantum exchange contribution is included in 
this work explicitly. 

 
Interaction energies in the mixture systems are calculated for use in the statistical 

model.  Distances coordinating to interaction energy minima are used in favorable interactions, 
while the sum of avgr  values is used for interactions dominated by the repulsion contribution.  
For the hydrogen bonding interactions, the TraPPE force field does not include a repulsive 
contribution at short interaction ranges.  An interaction distance of 2.0 Å is used, approximately 
the experimentally determined hydrogen bond distance.   

 
At present, use of the TraPPE force fields gives more accurate predictions of VLE 

behavior and thus will be used in the statistical model. 
  
Comparison of Lattice-Fluid Model to Pure Species and VLE Data 
 Pure species volumetric data is considered using the equation of state in (1.4) and the 
Guggenheim expression for the athermal ways in a pure species (Martinez, 1995).  The 
equation of state takes the form 
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where 00x  is the local composition of vacancies around vacancies.   
 
 A table of equation of state parameters for small molecules is located in Table 3.  
Trends along the values of the parameters are in italics.  Within the fluorinated methanes, the 
decrease of molecular volume b  is seen as the number of fluorine atoms in the molecule 
decreases.  Within the noble gases, the surface area parameter decreases from c=1.0 for a 
molecule occupying exactly one lattice site to that of xenon, a relatively bulky sphere 
occupying lattice sites with no external contacts.   

The interaction energy parameters within the inorganic molecules reveal trends in the 
electrostatic moments of the molecule.  The top five species are ordered by increasing dipole 
moment, as this is reflected in the increasing interaction energy parameter.  The bottom four 
neutral species have similar energies except for carbon dioxide and its large quadrupole 
moment. 
 



Table 3. Equation of State Parameters that Reproduce the Critical Point of Pure Fluids 
molecule b (cm3/mol) c  ε (K) molecule b (cm3/mol) c  ε (K) 
CF4 62.0 0.347 -432 CO 40.6 0.515 -181 
CHF3 60.4 0.318 -659 NO 27.1 0.565 -315 
CH2F2 56.1 0.311 -856 N2O 43.6 0.44 -537 
CH3F 52.6 0.328 -754 H3N 33.8 0.472 -810 
CH4 43.4 0.471 -292 H2O 26.6 0.541 -1318 
Ne 19.0 0.812 -35.2 N2 39.5 0.516 -175 
Ar 33.1 0.574 -196 O2 32.7 0.57 -208 
Kr 40.2 0.501 -305 F2 29.7 0.603 -187 
Xe 51.6 0.417 -477 CO2 42.2 0.452 -517 
 

The volumetric behavior of (1.6) using the parameters is exemplified when compared to 
the critical isotherm volumetric data of a species.  The equation of state shows behavior like 
that of an analytic expression around the critical point.  The liquid branch overpredicts the 
pressure of the pure species, while the vapor branch underpredicts the pressure. 
 
 Predictions of vapor/liquid equilibrium for binary mixture system are accomplished by 
calculating the activity coefficients of the species in the liquid phase.  Activity coefficients are 
determined through the total Gibbs energy found from the Gibbs ensemble in (1.1).  The first 
derivative of the excess Gibbs energy with respect to the number of molecules of type i  yields 
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where jZ  is the number of contacts of group j , ijν  is the number of groups of type j  in 

species i , and the pure i
jψ  is the activity of group j  in a system of pure i .  

 
For the athermal, or combinatoric, contribution ath

iγ , the Guggenheim expression 
rederived for a Gibbs ensemble is used.  The Guggenheim athermal ways function for a lattice 
system occupied by both molecules and vacancies is given by 
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where 0i iq z z=  and  
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If the original definition of iq is satisfied, namely ( ) 02 1i i iq r r z= − − , then (1.8) reduces to the 
original Guggenheim athermal ways expression. 
 
 After the activity coefficients have been calculated for the species in the liquid phase, 
the pressure of the vapor phase is given by 
 1 1 1 2 2 2

sat satp x p x pγ γ= +  (1.10) 
where sat

ip  is the experimentally determined saturated vapor pressure of species i  at the 
mixture system temperature. 



 
 Calculated pressures for three mixture systems are compared to experiment in Figures 
1-3.  For the systems presented, the TraPPE force field is used throughout, and the 
experimental vapor pressures are used to reproduce the limiting behavior.  For the 
alcohol/alkane mixture systems, the experimental liquid volume for the pure species is used to 
guarantee that the pure species contribution to the activity coefficient comes from a system 
with a liquid-like volume. 
 
 Also within the alcohol/alkane systems, the functional group activity coefficient for the 
hydrogen atom in both the pure alcohol and mixture system is set to zero.  In relating the 
quasi-chemical equations (1.3) to the work of Knox (1987), the functional group activity 
coefficient of i  is found more generally to be 
 i ii ixψ θ=  (1.11) 
where iix  is the local composition of group i  around i , and iθ  is the surface area fraction of 
group i .  If we assume the probability of a hydrogen atom occurring around another hydrogen 
atom in the liquid system is negligible, then it is assumed that 0 0ψ = .   
   

 
Figure 1.  VLE of n-propanol/n-butanol at 363.15 K: Model Compared to Experiment 
 

 
Figure 2.  VLE of pentane/ethanol at 372.7 K: Model Compared to Experiment 
 



 
Figure 3.  VLE of propanol/hexane at 313.15 K: Model Compared to Experiment 
 
Discussion and Conclusions 
 This work demonstrates that macroscopic system mixture properties are qualitatively 
(and nearly quantitatively) describable using the methods described above.  These methods 
do not include correlating any molecule-specific or global model parameters to any mixture 
data.  It is anticipated that full quantitative predictions are possible if the model parameters 
(vacancy volume, area of interaction) are optimized to predict the macroscopic properties, as 
in recent VLE models such as COSMO-RS and COSMO-SAC. 
 

The use of liquid volumes in the alkane/alcohol systems are necessary to predict a 
liquid-like state for the pure species.  In general, the model equations (1.3) and (1.4) do not 
properly predict a liquid-like volume for linear alkanes at the system temperatures above.   The 
experimental liquid volume would not be necessary if the model predicts this liquid root, as in 
the n-propanol/n-butanol system.  A version of the model will be created that allows for the 
study of these interaction wells and their effect on phase equilibrium of pure alkanes.   
 
 Thus far, the predictions using the TraPPE interaction parameters with the quasi-
chemical fluid model give a representation of the liquid phase properties most affected by a 
mixture process.  The interaction model under development yields interaction curves in good 
agreement with most TraPPE curves, except for those interaction schemes involving two 
highly charged alkyl groups.  Here again, the AIM charges are larger than those in TraPPE, 
which leads to a more repulsive interaction scheme.  It is anticipated that when this issue is 
resolved, the interaction scheme utilizing AIM properties can be used as successfully in the 
statistical model as the TraPPE interactions.   
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