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Abstract: We have recently proposed a new formulation of the optimal sensor selection problem 
for closed-loop partial state information dynamic systems. Although this formulation (a mixed 
integer convex program) yields to a globally optimal search scheme, the only economic information 
used is with regard to the capital cost of the sensors. Additionally, we have recently proposed a new 
stochastic based formulation of the minimally backed-off operating point (MBOP) selection 
problem. Although this formulation has strong profit based notions (due to its close relations to 
model predictive control and real-time optimization) and yields to a globally optimal search scheme 
(due to its convex/reverse-convex form), it assumes a fixed sensor array.  Thus, the goal of this 
work is to combine the two formulations and arrive at a value based sensor network design scheme. 
In addition to utilizing the capital cost of the sensors, this formulation will incorporate the impact 
of the sensor network on the feasible set of backed-off operating points and thus the operational 
profit of the process. We will further show that this new formulation can be cast into a 
convex/reverse-convex form, and is thus readily solved globally via a branch and bound procedure. 
The proposed method is then illustrated through a CSTR example. 
 
1. Introduction 
 
The subject of hardware selection has been of interest for some time (see [1], [2], [3] or [4] for 
extensive reviews of the subject). Clearly, this great interest, by a wide variety of authors, stems 
from the eventual realization that in spite of a high quality compensating element (i.e., the feedback 
law) the ultimate limitation on closed-loop performance will be dictated by the quality of hardware 
elements. Given a set of desired closed-loop performance goals, the typical economic based sensor 
network design problem ([5], [6], [7], [8]) is to determine the Minimum Capital Cost (MCC) 
network capable of meeting the pre-specified performance bounds. To date, all existing Sensor 
Network Design (SND) schemes that include economics are of this class or are equivalent to it. 
Unfortunately, the required selection of performance bounds is frequently a difficult task. That is, 
from a financial perspective, the process engineer can only state the cost of an up-grade but may 
have trouble quantifying the profit that will result. Thus, the goal of this work is to define a control 
system focused SND scheme that simultaneously incorporates the notion profit. 
 
Without the notion of profit, the MCC-SND problem for closed-loop systems is formulated as 
follows: Measured but noisy outputs are used by a Kalman filter to generate an estimate of the true 
system state. This estimate is then used by the controller to coerce the various performance outputs 
into being close to zero (in deviation variables). Thus, the goal is to achieve small standard 
deviations for the state and manipulated variables. To capture this notion one should define a set of 
performance inequalities: 22
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standard deviations. The trade-off concept of this formulation is that while the addition of a sensor 
will increase the system's capital cost it will also increase the controller's ability to satisfy the 
performance inequalities. Details of this formulation can be found in [7] and [8]. The main result is 



to convert the originally found MINLP into a Mixed Integer Convex Program (MICP), from which 
global solutions can be obtained. 
 
In recent decades, Model Predictive Control (MPC) has become a major vehicle for increasing 
process profitability, and thus will play a major role our new profit based problem formulation. It 
has long been recognized that the primary advantage of implementing MPC is the ability to move 
the steady-state operating point closer to operational constraints, which typically harbor the greatest 
amount of profit. Unfortunately, operation at the Optimal Steady-State Operating Point (OSSOP) is 
precluded due to the likelihood of constraint violations in the face of expected disturbances. Thus, 
the notion of a Backed-off Operating Point (BOP) was introduced by Narraway et. al. [9], to allow 
for disturbance induced variations while preserving much of the economic advantage of the 
OSSOP. These notions are illustrated in figure 1, where the conservative operating point is 
desirable from a constraint observance perspective. Using the notion of an Expected Dynamic 
Operating Region (EDOR), the BOP is selected to balance economic and constraint observance 
objectives. (The key aspect is to ensure the EDOR does not extend beyond the constraint polytope.) 
The impact of tuning parameters on the selection of the BOP is that controller design changes can 
result in modifications of the size and shape of the EDOR. Thus, it is proposed that appropriate 
controller design will allow the BOP to be moved closer to the OSSOP. By defining a simultaneous 
controller and BOP selection problem we arrive at the notion of a Minimally Backed-off Operating 
Point (MBOP) selection problem. As stated above, Narraway et. al. [9], first advocated the notion 
of a BOP. Stochastic versions of the problem were presented in Loeblein and Perkins, [10] van 
Hessem et. al., [11], Chmielewski and Manthanwar, [12] and Peng et. al.,[13]. These define the 
EDOR based upon the covariance ellipsoid generated by a given confidence interval. 

 

 
 

Figure 1: Economics of Operating Point Selection. 
 
 

Our new formulation aims to combine the capital cost aspects of the sensor selection problem, [8], 
with the profit based notions of the MBOP selection problem [13]. Starting from the MBOP 
problem, it is clear that the addition of sensors (i.e., better information to the controller) will allow 
for reduced back-off, and thus increased profit. Thus, the trade-off question is: When does the cost 
of adding sensors surpass the expected increase in profit? The computational challenge associated 
with combining these two problems is to coordinate between the integer constraints of sensor 
selection and the reverse-convex constraints of MBOP selection. To overcome this issue we will 
develop a reverse-convex constrained version of the sensor selection problem (i.e., replacing the 
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integer constraints). This will allow for a single branch and bound procedure to solve for the best 
sensor network while simultaneously finding the MBOP corresponding to that network. 
 
2. Problem Formulation 
 
2.1 Steady-State Optimization 
Similar to the MBOP selection problem, our new formulation starts by assuming the existence of a 
steady-state economic optimizer which operates on a nonlinear dynamic system ),,( pmsfs =& , 
where s is the state, m is the manipulated input and p is the disturbance. The steady-state optimizer 
will employ a nonlinear objective along with a set linear inequality constraints of the 
form: maxmin dqd ≤≤ , where pDuDsDq wux ++= . Thus, the steady-state optimization problem is 
stated as  
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where p is the measured/expected value of the disturbance and ),,( pmsg is an annualized profit 
function in the sense that it has units of $/yr. The solution to problem 1, the OSSOP, is denoted as 

∗s and ∗m . Next we assume that the actual operation of the plant will occur near the point 
),,( pms ∗∗ and develop a linearized dynamic model; pGmBsAs ~~~~ ++=& where )~,~,~( pms  are 

deviation variables with respect to ),,( pms ∗∗ and A, B and G are partial derivatives of 
),,( pmsf evaluated at ),,( pms ∗∗ . If we assume p to be equal to )0~.,.( =peip then the following 

equality limits the set of available BOPs: ssss mBsA ~~0 += . A similar development with respect to 

the constraints yields the following additional limitation of available BOPs: maxmin
~~~ dzd ss ≤≤  where 

pDmDsDddpDmDsDdd wuxwux −−−=−−−= ∗∗∗∗
maxmaxminmin

~,~ and ssssxss mDsDz ~~~ += . Since 
dynamic operation will occur around the point ),~,~( pms ssss , we define new deviation variables and 
constraints: 
  sssswux zdzzdwDuDxDzGwBuAxx ~~~~,, maxmin −≤≤−++=++=& ,  
where sssssx ~−−= ∗ , ssmmmu ~−−= ∗ and ppw −= . 
 
2.2 Sensor Placement 
Given a measurement equation vCxy += along with a stochastic framework (w and v being 
Gaussian white processes with zero mean and covariance w∑ and v∑ , respectively), a Kalman filter 
can be used to generate an estimate, x� , of the true state, x. If we assume that each of the 
measurement noise terms is independent of the others, then v∑ will be diagonal and 1−∑ v can be 
readily defined as }/{ 2

ividiag σβ where 2
ivσ is the actual variance of sensor i and iβ  is a decision 

variable indicating the presence/absence of sensor i. This definition of v∑ indicates our method of 
removing sensors. For example, if 0→iβ , then the thi element of v∑ will become large, indicating 
that the thi sensor is extremely noisy. In this case, the optimality aspect of the Kalman filter will 
force it to ignore this noisy sensor and make it appear to be absent. Note that this removal of a 
sensor is achieved without changing the value or structure of the matrix C. 



 
A direct extension of our previous sensor selection formulation [8] would result in a mixed integer 
convex program, due to the integer aspects of iβ . However, as discussed in section 1, this integer 
formulation does not combine well with the reverse-convex aspects of the MBOP selection 
problem. Thus, we propose the following method of converting the integer constraints to reverse-

convex inequalities. We start by defining a scalar function ℜ→ℜ:h : 
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where )1/()1(,/ 001000 xymxym −−== and )1/()( 0001 xxyb −−= . Selecting 85.00 =x and 
1.00 =y yields a function h as in figure 2 (in the example to follow we used 9999.00 =x and 
0001.00 =y ). Next we introduce a new set of variables cβ and pβ  (each with 

elements ic,β and ip,β ). These will serve to split β into a cost aspect, cβ , and a precision aspect, pβ . 
That is, ic,β  will appear in the objective function to reflect the capital cost of sensor i and ip,β will 

appear in the 1−∑ v  function to reflect the precision of sensor i. The two β 's are then connected by 
the inequality )( ,, icip h ββ ≤  (see figure 2). This reverse-convex inequality mimics the integer 
constraint by only allowing the precision aspect to be large (i.e., 0, yip >β ) if the cost aspect is also 
large (i.e., if 0, xic >β ). 
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Figure 2: New Reverse Convex Constraint   Figure 3: CSTR System of the Example  
 
2.3 Covariance Analysis 
Returning to the partial state information control problem, we apply a linear feedback of the form 

xLu �=  to the linear dynamic system described above. Then, the steady-state covariance of the 
signal z is given by T
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(see [8] for the details of the above derivations). Since the variance of the thi output (denoted iζ ) is 
found as the thi diagonal of z∑ , we define iφ  as the thi row of an appropriately sized identity matrix, 



and conclude that T
izii φφζ ∑= . Contrasting this with the point-wise in time constraints of section 

2.1, issiiissi zdtzzd ,max,,min,
~~)(~~ −≤≤− , we propose the following inequality constraints: 

2
max,, )~~( iissi dz −≤ζ and 2

min,, )~~( iissi dz −≤ζ . These reverse-convex constraints serve to ensure that the 
single standard deviation ellipse defined by z∑  (and centered at q), will be contained in the box 
defined by ),( maxmin dd . 
 
2.4 Simultaneous Formulation 
Using the above developments, the simultaneous sensor and MBOP selection problem is now 
formulated as: 
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where sd and md  represent partial derivatives of ),,( pmsg with respect to s and m evaluated at the 
point ∗s , ∗m and p . Additionally, cd is a vector indicating the annualized cost associated with each 
selecting sensor. This annualized cost includes purchase, installation, maintenance and replacement 
costs (replacements being at periods equal to the average lifespan of the sensor). 
 
Theorem 1 ∃  stabilizing L, 0,0 ≥∑≥∑ ex  and iζ   
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The proof of this theorem is a simple extension of a theorem presented in [8]. Using this theorem 
we can exactly convert a portion of the nonlinear constraints of problem 2 (namely the last 3) into a 
Linear Matrix Inequality (LMI) form. (For details concerning the computational aspects of LMI 
constrained problems please see [14] or [15]). The end result is a linear objective problem 
possessing a set of convex constraints along with a set of reverse-convex constraints. Details 
concerning a branch and bound, globally optimal search scheme for this class of problems can be 
found in [13]. 
 
3. Example 
 
Consider the reactor system of figure 4 (details about this system can be found in [16]). We start by 
linearizing the nonlinear dynamic model around the nominal operating point. The resulting linear 
model GpBmAss ++=& has 5 states and 5 inputs (3 manipulated and 2 disturbance) 

T
cA PVTTCs ][= , T

vgc FFFm ][= and T
Aii CFp ][= . From this model we determine the set of 

possible steady-state operating points defined by the equalities 110 pgBmAs ++= . (In this steady-
state phase we allowed the nominal value of the inlet flow rate (denoted 1p ) to be selected by the 
economic optimizer. This was not required, but it did make the example more interesting. When we 
get to the dynamic phase, the actual inlet flow rate will vary stochastically around this selected 
point.) Combining the above equalities with a set of upper and lower inequality bounds on each 
variable (see the dashed line of figures 4 - 7) we fined the set of feasible steady-state operating 
points. Next we define a profit function: 
  ])([),,,( 321 vgcAAianvgcA FFFCCMFFFCg ααα −−−=  
where 1α =$0.375/mole B, 2α =$ 0.015/ft3 of cooling water, 3α =$ 0.00225/ ft3 of vapor pumped 
and Man=8760 hr/yr. The profit function is then linearized around the nominal operating point to 
yield TTTT

gvgcA pmscFFFCgg ][),,,( 1+≅ , where T
gc is the partial derivative of the profit 

function evaluated at the nominal conditions. This along with the set of feasible steady-state 
operating points is used to define a steady-state optimizing LP (which maximizes profit or 
minimizes negative profit). The solution to this LP (the OSSOP) is indicated by the * points in 
figures 4 - 7 and has a profit g* = $47,370/yr. This solution represents the amount of profit one 
would yield if zero cost, perfect sensors were available and no disturbances acted on the system. 
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Table 1: Profits and Values of Upgrade Configurations 

No New Sensors  Profit  
($/yr) 

Value 
 ($/yr) 

Sensor Costs 
($/yr) 

Value   
 - Sensor Costs 

($/yr) 
1      CA, P 36,030 7,060 2,000 5,060 

2 CA, Tc, P  36,600 7,630 3,000 4,630 

3 CA, T, P 36,590 7,610 3,000 4,620 

4 CA, V, P 36,060 7,090 3,000 4,080 

5 CA 33,840 4,870 1,000 3,870 

6 P 33,470 4,500 1,000 3,500 

7 T, P 34,390 5,420 2,000 3,420 

8 CA, T, Tc, V, P 37,060 8,090 5,000 3,080 

9 T, Tc, V, P 35,120 6,150 4,000 2,140 

10 none 28,970 0 0 0 
 
 
Returning to the system dynamics, we start by assuming the disturbance inputs iF and AiC will have 
standard deviation values equal to 0.1 and 0.01, respectively. Next, we assume that the existing 
sensor network consists of 4 sensors, at CA, T, V and P, each with a precision of 2%. If we then 
solve the MBOP problem using this existing network, we find the expected profit to be $28,970/yr. 
The MBOP and EDOR resulting from the existing sensor network is indicated by the triangle 
points of figures 4 - 7).   Next we assume that new 1% precision sensors are available at each state 
(i.e., at CA, T, Tc, V and P). However, if a new sensor is placed then the old one must be removed. 
The placement of a new sensor will have an annualized cost of $1000/yr, and there will be no 
annualized cost due to leaving an old sensor in place. If we now place new sensor at all 5 locations 



and apply the MBOP selection method, we find that the profit will increase to $37,060/yr, due to 
our ability to move of the steady-state operating point closer to the OSSOP (this solution is 
indicated by the square points of figures 4 - 7). If we then subtract this amount from the profit of 
the existing network, we find that the value of the 5 sensor configuration is $8,090/yr, and the 
increase in profit (value minus sensor cost) is $3,080/yr.  Application of a branch and bound, global 
search scheme to our simultaneous sensor and MBOP selection problem indicates that replacement 
of sensors at CA, and P will yield greatest increase in profit (see the circle points of figures 4 - 7).  
The profit/value figures for this and other configurations can be found in table 1.  
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