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Abstract 

 While genomics (the set of experimental and computational tools that allows the 

blueprints of life to be read) opens the doors to a more rational approach to the design and 

use of living cells to bring about desirable chemical transformations, genomics is, by itself, 

insufficient.  We need tools that allow us to relate genomic and molecular information to 

cellular physiology and then to the response of a population of cells.  Chemical engineering 

tools applied to the design of chemical plants can be adapted relating system performance 

(i.e. the cell) to genomic information.  We propose the development of hybrid cellular 

models.  In such models genomics and chemical detail for a cellular subsystem (e.g. 

pathogenesis) is embedded in a coarse-grain cell model.  Such a construct allows the 

quantitative and explicit linkage of genomic detail to cell physiology to the extracellular 

environment. 
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I. Overall Vision 
 Our vision is to develop a framework using computer and experimental models to 
quantitatively and explicitly link genomic/molecular level insights to the physiology of whole 
organisms.  Our group works at two extremes:  (1) a microbial model, and (2) a model of the human 
body.  The microbial model can be done in much greater detail than the human model and is easier to 
verify and is the subject of this paper.  The human model may have more impact and demonstrates the 
broad potential of hybrid models. 
 This vision addresses what we believe is the essential challenge to biology and medicine.  
Namely, how to make sensible use of genomic (and related ��omic� information).  Biology is in 
transition from a data poor to data rich field thanks to advances in the underlying technology (e.g. 
high-throughput techniques).  The output of such studies is information, but we lack a theoretical 
framework in which to organize, test, and use this basic information.  We believe we can construct 
both experimental and computer models that will allow us to quantitatively and explicitly cross 
scales; through such models we can directly link genomic and molecular information to physiological 
response. 
 We are particularly interested in a new approach �hybrid� models.  We believe this approach 
will be our best opportunity to build models of complex organisms that are both realistic, tractable, 
and useful.  Hybrid models start with a genomically/molecularly detailed model of a subsystem of 
interest.  We then insert this detailed submodel into a cellular model with pseudo-molecular detail 
(i.e. �coarse grain� models), and then the cellular model into a system model.  For bacteria the system 
is a population of cells in a bioreactor or a national environment.  For a human this would mean 
putting a genomically detailed model of a subcellular mechanism into a cell model (could be in 
multiple cell types) into corresponding tissue/organ model(s) which is embedded in a physiologically-
based pharmacokinetic model (PBPK).  PBPK models have been long used by the biomedical 
community, but often lack mechanistic and kinetic detail, which would now be provided by input sub-
models.  Such models could be computational, but can be made as physical devices using the 
techniques of microfabrication (eg. we have constructed crude devices with liver-fat-lung-other tissue 
compartment; see Sin et al. (2004) and Viravaidya & Shuler (2004a; 2004b)). 
 The benefits of applying such modeling approaches to either a population of bacteria or to the 
human body are two-fold.  First, to �understand� a system you must be able to recreate it.  A parts list 
(genome) is insufficient.  Regulatory structure is critical.  An isolated submodel removed from the 
context of the complete biological system is of limited utility.  An effective model tests the level of 
understanding by making predictions that can be verified or denied.  While no model can �prove� a 
proposed mechanism, it can be used to confirm its plausibility.  A second benefit is the practical 
application of the model.  For humans the type of models envisioned provides a rational basis to 
evaluate proposed therapeutic strategies (e.g. combination therapy for cancer or gene therapy) or 
evaluate molecular targets for their potential to offer cheaper, less invasive, and earlier diagnosis of 
disease.  For a population of microbes we might better understand how molecular mechanisms relate 
to the biotechnological application of that organism. 
 
II.  Building Bacterial Cell Models: The �Minimal Cell� as a Foundation 

 While our overall aim is to build a model for real organisms using this hybrid 
approach, we believe a fully-detailed model of a hypothetical �minimal cell� is critical to 
both testing fundamental concepts about microbial physiology and to building the 
methodology necessary to construct hybrid models of real cells quickly and efficiently. 
 A minimal cell is a hypothetical cell defined by the essential functions required for life 
[Castellanos et al., 2004].  The model seeks to identify a minimum number of genes necessary and 
sufficient for the cell to divide and grow continuously in a rich environment with preformed nutrients 
and relatively constant temperature and pH.  The model, which contains kinetic and thermodynamic 
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constraints as well as stoichiometric constraints, can be used as a tool to identify the organizing 
principles which relate the dynamic non-linear functioning of the cell to the static linear sequence 
information of the genome. 

The success of whole organism genome sequencing and high-throughput measurements provides 
an opportunity for system-level analysis of whole organisms or what has been termed �systems 
biology� eg. [Kitano, 2002].  Systems biology investigates the �behavior and relationships of all of 
the elements in a particular biological system while it is functioning�.  The emphasis in our project is 
on modeling the complete functionality of a cell and its explicit response to perturbations in its 
environment [Browning & Shuler, 2001] and to build hybrid models starting with a 
genomically/molecularly detailed model of a subsystem of interest, inserting that submodel into a 
cellular model with pseudo-molecular detail (i.e. �coarse grain� models), and then the cellular model 
into a system model.  Our attempt to generate �complete� and hybrid models that predict time-
dependent responses of a cell differentiates this project from others.  

Many investigators have made significant contributions to our understanding of bacterial 
metabolism, particularly central carbon metabolism.  The studies have taken advantage of detailed 
genomic information and some models are based primarily on stoichiometry and techniques involving 
flux balance analysis, metabolic control theory, and mathematical techniques for optimization eg. 
[Burgard et al., 2001; Edwards & Palsson, 2000].  Since these models are intrinsically static, they 
have limited ability to predict aspects of cell regulation and dynamic response (although by the 
addition of constraints, such as uptake rates of a nutrient, these models provide some insight into the 
dynamic state that can be achieved).  Others have proposed methodology to incorporate more directly 
dynamic (kinetic) information into models of central metabolism eg. [Chassagnole et al., 2002].  
Others have attempted to model whole cells [Tomita, 2001], but those models, while attempting to be 
whole cell models neglect important, non-metabolic aspects of cell growth (eg. control of 
chromosome replication or spatial issues associated with position of septa).  These studies, and many 
other similar ones, have contributed towards a systems biology perspective.  However, all of these 
approaches are �incomplete� descriptions. 

Incomplete descriptions may lead to conclusions that are inaccurate as there is an implicit 
assumption in such studies.  The assumption is most easily illustrated by considering the metabolic 
flux analysis of an isolated pathway.  As shown by Schlosser and Bailey [1990], such analysis is 
correct only if the output of the pathway cannot influence any input into the pathway.  Any �cell� 
model that is �incomplete� assumes that no output of the model either directly or indirectly can 
influence any input or state within the model within the timescale of interest. 

A �complete� model of a real organism is a daunting task [McAdams & Shapiro, 2003; Bailey, 
2001], but we believe our goal of a hypothetical minimal cell model is both achievable and will 
provide insights into biological questions of immediate importance. McAdams & Shapiro [2003] 
write �� to develop �whole-cell� models� major, perhaps insurmountable, difficulties must be 
overcome� Problems include lack of quantitative data on molecular concentrations and kinetic 
parameters as well as only piecemeal characterization of the cell�s regulatory circuitry�.  While we 
agree with the problems they identify, we are optimistic and we agree with Alon [2003] that a 
�reverse engineering� approach that takes advantage of the natural characteristics of biological 
systems: modularity, robustness, and use of recurring circuits elements can succeed. This is the basis 
of the approach we will describe.  Just as an engineer will design an airplane based on functional 
constrains and make use of prior designs we will design a cell (using guidance from existing cells) to 
perform the essential tasks necessary to survive indefinitely and translate that design into a 
hypothetical genome, just as the airplane design is translated into blueprints and construction 
documents. We describe in this paper methodology to rapidly estimate a credible set of kinetic 
parameters overcoming one of the key limitations suggested by McAdams & Shapiro [2003]. 
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Perhaps the question of �What is essential for life?� is one of the most fundamental questions 
facing humanity and a minimal cell model begins to answer this question.  By constructing a minimal 
cell in silico we can seek to understand and identify underlying regulatory and organizational 
concepts central to life. This exercise is very important since our understanding of things is never 
fully complete until we can reconstruct them. 

Although a minimal cell is hypothetical, the applicability of such a detailed model is enormous.  
The proposal model can lead to a better understanding of the behavior of chemoheterotrophic 
bacteria.  While a minimal cell model will suggest the essential components of regulation, a deeper 
insight into the logic of cell regulation can be achieved in future studies by perturbing the 
environment with large changes until the model cell fails (�dies�) and then finding regulatory 
approaches that allow survival.  In essence, we wish to understand how selective pressure relates to 
microbial evolution.  A more complete understanding of essential cellular structure and regulation is 
important for bioprocess engineers to metabolically engineer cells for production of desirable 
metabolites and/or to design improved operating strategies for bioprocesses.  

Additionally, we can use the minimal cell as a basis to learn to build hybrid models of 
real cells.  The key requirements for such hybrid modules is �modularity� and the ability to 
construct species specific coarse grain models rapidly.  Using the minimal cell we 
demonstrate modularity and also techniques to evaluate kinetic parameters rapidly. 

 
III.  The Minimal Cell Concept 

The minimal cell concept can be traced back to the 1950's when Harold Morowitz and 
colleagues began to seek the smallest, autonomous, self-replicating entity.  They correctly identified 
Mycoplasma as the best living example of a minimal organism (both in terms of size and genome).  
Morowitz proposed that it should be possible to build a computer model of such a complete cell.  He 
also wrote that with Mycoplasma �Their existence with all the properties of life says the �logic of life� 
is finite, relatively simple, and subject to full exploration� [Morowitz, 1984]. 

By the mid-1990�s the issue of a minimal gene set began to attract increased attention.  In 1995, 
Itaya [1995] used random gene knockouts in Bacillus subtilis to estimate that 254 genes are essential.  
Mushegian and Koonin [1996] compared the full genome sequences of Haemophilus influenzae and 
Mycoplasma genitalium and proposed a set of about 250 genes as a minimal gene set. A large project 
was begun shortly afterwards to create a minimal cell.  The ultimate goal was the experimental 
construction of an artificial minimal genome.  Hutchinson et al [1999] used transposon knockouts of 
M. genitalium to predict that about 265 to 350 genes (about 100 with unknown function) were 
essential.  The so named E-CELL model was created as a component of this minimal cell project 
[Tomita, 2001].  However, the project was abandoned [Peterson & Fraser, 2001].  A very similar 
project under Venter's leadership has been restarted to develop a synthetic chromosome as the first 
step toward making a self-replicating organism [Zimmer, 2003].  The technical difficulty of fitting the 
minimal genome with a working cell structure is acknowledged as a major challenge[Zimmer, 2003]. 

Peterson and Fraser [2001] reviewed key difficulties in a minimal cell project. They conclude, 
�We believe that the concept of the minimal genome is a useful tool in attempting to organize our 
thoughts about gene function - even though we may never, in practice, be able to reach a definition of 
a minimal gene set that is applicable to all types of organism�.  One specific issue is the existence of 
paralogous genes that ��greatly hampers genome-scale mutagenesis experiments�.  For example, an 
essential function can be accomplished by either gene product A or B; single gene knockout 
experiments will not reveal either A or B as essential as both must be eliminated simultaneously.  As 
they point out one must ��take care to discriminate between dispensable genes and dispensable 
functions.� 
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Koonin [2000] reviewed advances since their 1996 paper that demonstrate the complexity in 
using comparative genomics to establish a minimum gene set.  For example, of the 256 genes 
identified as essential in 1996, 15% were found to be dispensable in knockout experiments.  Further, 
when 21 genomes are compared only 80 genes (instead of 256) are universally present.  These two 
results are ascribed, in part, to NODs (non-orthologous gene displacement - where the same function 
is performed by unrelated or very distantly related and nonorthologous proteins).  Thus, comparative 
genomics is limited in its ability to reveal a true minimal set of genes suggesting the need for 
alternative approaches.  Koonin differentiates between essential genes and essential functions. 

A minimal gene set derived by comparative genomics approach is likely to be an underestimate 
(due to non-orthologous gene displacement).  Additionally an experimental approach can 
overestimate the minimal set substantially (genome scale knockouts could identify genes as essential 
even when the deletion only slows growth [Koonin, 2003]).  Computer simulations offer an 
alternative to comparative genomics and experiments to identify a minimal gene set. 

A computer model approach should result in a set of minimal functions that will correspond to 
real genes, which exist in nature, and 200 genes is our projected number of essential genes.  The 
model we are developing focuses on essential functions while finding examples of gene products that 
can perform those functions.  While the set of minimal genes we postulate may change (eg. if a new 
multifunctional protein is found), we believe we can find a set of essential functions.  Further, the 
technical difficulties associated with generating an experimental minimal cell and the ambiguities in 
interpretation of comparative genomic data argue for the establishment of a theoretical computer 
model of a minimal cell.  This model must be explicit about minimal functions and include a realistic 
set of proteins to accomplish these functions.  This is, we believe, the most practical route to a 
minimal cell. 

 
IV. The Cornell Single Cell 

 We have previously developed a �complete� cell model of E. coli that contains all of the 
functional elements for the cell to 
grow, divide, and respond to a wide 
variety of environmental 
perturbations.  All chemical species 
are included, but lumped into 
pseudochemical groups.  This �coarse-
grain� model serves as the basis for 
our efforts to build a minimal cell 
model.  Basically, the E.coli model is 
a good summary of the 
functionality required for a 
minimal cell, but it does not 
capture explicitly the physical 
chemistry that supports those 
functions.  We described our first 
mathematical model of a single E. 
coli cell in 1979 [Shuler et al., 
1979]; at that time, it was the only 
model of an individual cell that 
did not include artificially-
imposed constraints on aspects 
such as mode of growth, timing of 
cell division (eg. growth rate), and 

GLN 
E4 

Figure 1.  An idealized sketch of the model of E. coli B/rA growing in a
glucose-ammonium salts medium with glucose or ammonia as the limiting
nutrient.  At the time shown, the cell has just completed a round of DNA
replication and initiated cross-wall formation and a new round of DNA
replication.  Solid lines indicate the flow of material, while dashed lines
indicate flow of information. 
A1= ammonium ion                                                     M2RTM=mature r-RNA and t-RNA 
A2= glucose (and associated compounds)                   M2M=messenger RNA 
W= waste products (CO2, H2O, and acetate)              M3=DNA  
P1 = amino acids                                                   M4=non-protein part of cell envelope 
PG= ppGpp                                                                  M5=glycogen 
P2 = ribonucleotides                                              E2, E3=molecules involved in cross- wall 
P3= deoxyribonucleotides                                                 formation and cell envelope synthesis 
P4= cell envelope precursors                                       GLN=glutamine 
M1 = protein (both cytoplasmic and envelope)       E1=enzyme in the conversion of P2 to P3 
M2RTI= immature �stable� RNA                                  E4 = glutamine synthetase 
*� the material is present in the external environment 
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cell size.  Also, it was unique in its ability to respond explicitly to concentrations of nutrients in the 
environment [Bailey, 1998].  This base model [Domach et al., 1984] has been embellished with 
additional biological details to allow prediction of a wide-range of responses to environmental and 
genetic manipulations.  The initial model included only 18 pseudochemical species that represented 
large groups of related chemical species; Fig. 1 lists the components and graphically depicts the 
relationships between components.  The mathematical description of cellular function, which is the 
core of the model, is based on time-variant mass balances for each component.  Each mass balance 
takes into account the component�s synthesis (as a function of availability of precursors and energy, 
relevant enzymes), utilization, and degradation.  Stoichiometric coefficients for relating components 
through mass balances were derived primarily from published research, and in some cases, from our 
own experiments.  It is important to note that the model was NOT developed by using adjustable 
parameters to fit model predictions to experimental results, nor did the stoichiometric mass balances 
assume a steady state (i.e. the amount of each component was allowed to vary with time).  Despite the 
simplifications that were made in describing cell composition and relationships, the model can 
accurately predict changes in cell composition, size, and shape, and the timing of chromosome 
synthesis as a function of changes in external glucose and ammonium concentration [Domach et al., 
1984]. 

 The dynamic mass balances are solved by forward integration from an initial condition (both 
extracellular concentrations of nutrients and intracellular estimates of all pseudochemical species) 
using a Runge-Kutta type technique.  A variable step size is used as the equations become very stiff 
when chromosome replication is initiated (i.e. large flux through a small pool P3).  Conditional 
statements are included for fork position, gene dosage, potential for initiation of chromosome 
replication, cell shape and position and completeness of cross-wall formation. 

Other biochemical details have been added in subsequent studies that allow the study of the 
effects of amino acid supplementation [Shu & Shuler, 1991] and of competition between recombinant 
mRNA and ribosomal mRNA in the context of high translational activity [Laffend & Shuler, 1994a].  
The model has also been utilized extensively to improve the use of plasmids for recombinant protein 
production; (eg.[Kim & Shuler, 1990, 1991; Laffend & Shuler, 1994b]).  The calculations have 
proven to be quite robust and results are reproducible. 

We have used the structure of the E.coli model to build a coarse-grain minimal cell model 
[Browning & Shuler, 2001] that is a generalized model of chemoheterotropic bacteria.  By using 
dimensionless concentrations and growth rates, we demonstrate that it is the relative value of 
parameters, rather than absolute values, that are key to physiological response and thus a generalized 
chemoheterotroph can be construct that is consistent with a wide range of experimental data 
(Browning & Shuler, 2001).  The coarse-grain minimal cell model is �complete� in terms of function 
and is �modular�.  By modular we mean that we can �delump� a pseudochemical species into 
individual components while still maintaining the essential connectivity to other functions in the cell 
[Castellanos et al., 2004].  This allows us to add detail in parallel efforts on different �modules� and 
then have confidence that they can be recombined into a functional and functioning whole.  This 
strategy is our basic approach to constructing a genomically and chemically detailed minimal cell 
model.  It depends on our ability to treat pseudochemical compounds as modules. 

 
V.  Demonstration of Modularity of Basic Minimal Cell Model 

We have tested the hypothesis that it is not the exact values of parameters in the model that 
determine function, but that the values relative to one and another is critical. We tested this 
hypothesis by varying all kinetic rates by a scaling factor (or kinetic ratio).  The growth rate scales 
directly with the kinetic ratio over about two orders of magnitude.  At low values of growth rate, 
membrane energization becomes important and linearity is lost.  Cell composition (eg. protein/cell, 
RNA/cell, etc.) remains constant for a wide range of kinetic ratios.  Further, relative growth rate 
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changes for models with different kinetic ratios is essentially the same for a wide variety of 
perturbations to cell function (which also confirms the computational robustness of the model).  Also 
the general physiological behavior of a variety of common bacteria (based on experiment) scales with 
a dimensionless growth rate, suggesting that the lessons from a hypothetical cell model will be 
broadly applicable to chemoheterotrophic bacteria. 

A key aspect of the original Cornell E. coli model was a model that mechanistically coupled cell 
growth, chromosome replication, and cell division.  We have updated the model for control of 
chromosome replication based on new experimental evidence since 1984.  While the revised model is 
significantly different in terms of biological mechanism (positive vs. negative control), the 
mathematical characteristics are quite similar.  Indeed, it may be that any functional mechanism for 
control of replication must satisfy similar mathematical constraints. 

A manuscript on the revised model for chromosome replication is in press.  While this model 
shares similarities with the initiator-titration model of Hansen et al [Hansen et al., 1991], it includes 
ATP-bound DnaA as the active species.  We have developed both deterministic and stochastic 
versions of control of initiation of chromosome replication in the model (to determine robustness to 
intracellular fluctuations in concentrations).  The model also takes advantage of the genomic data on 
E. coli to locate all three types of DnaA-binding sites on the chromosome.  The model examines the 
effects of various binding strengths on the robustness of the system.  The model allows an evaluation 
of potential �costs� of strategies for number and placement of such binding boxes.  

Our minimal cell model for nucleotide metabolism [Castellanos et al., 2004] confirms the 
concept of modularity by testing a functional nucleotide subsystem model with significantly fewer 
gene-encoded functions (12) than estimated previously.  In the M. genitalium genome sequence 
[Fraser, 1995] 25 genes can be associated with nucleotide transport and metabolism.  Mushegian and 
Koonin [1996] estimated that the minimal gene set includes 23 genes for nucleotide metabolism.  
Hutchinson et al [1999] concluded that only 18 genes were essential for transport and metabolism of 
ribonucleosides.  Kobayashi et al [2003] include 10 genes in the nucleotide category but they point 
out that due to single gene inactivation, the number of genes in their minimal gene set is likely to be 
underestimated.  Their list of essential genes appears incomplete, based on the diagramed pathways 
(supplemented information to Kobayashi et al., 2003.  Our minimal cell pathway with 11 functions 
(12 genes) permitting growth from preformed ribonucleosides precursors is the most efficient (fewest 
genes) of any study with a complete pathway.  Our minimal cell pyrimidine nucleotide biosynthesis 
pathway includes: uracil phosphoribosyltransferase, cytidylate kinase, ribonucleotide reductase, 
thymidylate synthetase, deoxyuridine triphosphatase, adenylate kinase, and thymidylate kinase.  Our 
minimal cell purine nucleotide biosynthesis pathway includes: adenine phosphoribosyltransferase, 
guanine phosphoribosyltransferase, adenylate kinase, ribonucleotide reductase, and guanylate kinase.  

An example of the equation used in the nucleotide model [Castellanos et al., 2004] describing 
the reduction of dUMP to synthesize dTMP by thymidylate synthase is shown below: 

 

k12, is 
the 

maximum rate of synthesis for dCMP synthesis respectively; KP24dM, KP24dM/P25dM, KP24dM/P21T are 
saturation or equilibrium constants;  P24dM, P25dM, P21T, P24dD are the amount per cell of dCMP, dCMP, 
ATP, and dCDP respectively, and V is for the cell volume.  All parameters were estimated from 
experiments reported in the literature. 

It may be noted that nucleoside diphosphate kinase (NDK) is missing from the list of 
essential proteins; most would anticipate its inclusion.  However, M. genitalium does not encode a 
homolog of this enzyme; Mushegian and Koonin [1996] detected a novel gene ndk (MG268) to 
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perform this essential activity among genes of unknown function.  Though, disruption of this gene in 
Hutchinson et al, [1999] experiments demonstrated that the gene was not essential.  However Lu et al 
[1996] found that adenylate kinase possesses NDK activity and is unique among all the NDK�s in this 
regard.  The experimental evidence allows us to include adenylate kinase as the gene that catalyzes 
NDK reactions.  A key achievement is the demonstration that we can delump a module, insert 
genomic and chemical details, and maintain a fully functional complete cell model.  In essence, we 
have a hybrid �coarse-grain� whole cell model in which a genomically detailed model is embedded 
within the coarse grain minimal cell model.  Thus, we have established the concepts of �modularity� 
and �connectivity� discussed earlier. 
 
VI.  Demonstration of Approach to Rapid Estimation of Kinetic Parameters 
 The construction of the coarse-train model with detailed nucleotide modules required 
a tedious search through the literature to estimate parameters and requires considerable 
biological insight by the modeler.  To build such hybrid modules for real cells, it would be 
helpful to have a methodology to take a general coarse-grain structure and estimate 
parameters using growth data that can be obtained quickly. 

 Sethna�s research group has developed a generalizable approach to extract falsifiable 
predictions from biological models using statistical mechanical type models [Brown & Sethna, 2003; 
Brown et al., 2002].  The method involves using a specific cost function using all experimental data 
along with error values, and a corresponding model output evaluated with a parameter set p.  For a 
minimal cell a �data� set is the required �design performance� of the minimal cell model and is 
obtained from the generalized behavior of chemoheterotrophic bacteria.  This cost function is then 
related to the energy of a statistical mechanical system, and the function optimized to find a �best� 
parameter fit with the lowest cost.  This parameter set becomes the starting point to generate an 
ensemble of parameters using the Monte Carlo method. 

We have validated this approach with our base coarse grain model (E. coli model), for which we 
have significant experimental data.  The optimization routine has provided a parameter set that allows 
an excellent match of model predictions to the experimentally observed behavior of E.coli in glucose-
limited chemostats.  Additionally we have found that most of the parameters previously estimated 
from mass balances, stoichiometry and the literature and from applying the Sethna approach to a 
series of chemostat data gave nearly the same value (+ 10 %) for almost all the parameters.  Only 6 
parameters (68 parameters were studied) differed more than 10% from original parameter estimate 
with a maximum difference of 25%.  We have preliminary results of the parameter sensitivity study 
that follows the optimization.  Future experiments will include studying the model responses to 
perturbations of these parameters. 
 
VII.  Application to Microbes 
 Consider how we might approach modeling a microbial pathogen.  The first step 
requires construction of the coarse-grain model.  For microbes that can be cultured we 
believe we can rapidly estimate all of the essential parameters.  Relatively high throughput 
chemostat systems using mini reactors are available.  Using a variety of steady state flow 
rates, nutrient levels and types, and flow perturbations as inputs and measuring cell 
composition, size, residual nutrient levels, and by-product levels it is possible to form a 
significant database.  Microarray data from perturbation experiments would be useful but not 
essential.  We can then apply the approach described in Section VI to estimate the basic 
parameters.  Here we assume that the general chemoheterotrophic behavior applies to the 
microbe of interest. 
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 The second step is to abstract a proposed mechanism, say of pathogensis, into a 
detailed model incorporating all suspected genes and known regulatory features.  Of 
particular importance will be the connection of this mechanism to extracellular cues and to 
the physiologic state of the cell. 

 The third stage is to place the cell in the context of environments of interest.  For 
validation purposes experiments with low density cultures can be used to compare to 
predictions of response to predetermined perturbations.  A more sophisticated set of 
experiments would be to examine microbe to microbe interaction (e.g. quorum factors) and 
microbe-tissue interactions.  Proposed mechanisms of interaction would have to be placed in 
the model to make experimental to model prediction comparisons. 
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