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Abstract 

Designing sustainable and efficient businesses requires techniques that can provide a holistic 
system-wide perspective. Such system may refer to a manufacturing plant or the life cycle of the 
business activity or enterprise. A plant-wide assessment (PWA) has to deal with different 
processing units on-site and their interactions with the objectives that include identification of 
process integration opportunities and avenues for capacity expansion. Similarly, a life cycle-wide 
assessment (LCA) has to deal with the business in question, and its demand and supply chains. 
The primary motivation behind doing a life-cycle assessment is to incorporate environmental 
considerations in product and process design and retrofit. System-wide assessments such as 
PWA and LCA often have to deal with multiple scales of operation and information. For instance, 
PWA has to consider a coarser plant-scale comprising various processes on-site and a finer 
equipment scale comprising specific unit operations within those processes. Similarly, LCA has to 
consider a coarser economy-scale comprising various industry sectors and a finer plant-scale 
comprising specific businesses within those industry sectors. Integration across scales is 
essential for efficient and sensible decision making. A decision maker who sets out with the 
aforementioned multiscale and systems perspective has to deal with data and models at different 
scales that vary substantially in their quality, subjectivity and completeness. Moreover, data and 
models at each scale may not be mutually compatible. To take prudent decisions in system-wide 
assessment it is necessary to systematically fuse all available information into a hybrid dataset 
that is as complete and internally consistent as possible. Moreover, the dataset must also comply 
with various constraints. Such hybrid dataset, once compiled, can be used as a basis for system-
wide decisions that may range from identification of process bottlenecks to life cycle 
environmental implications of products and processes. This presentation proposes and applies a 
new data fusion framework to address the needs of system-wide assessments. The new 
approach uses a tree representation to connect multiple scales. The framework ensures intra-
scale and inter-scale model and data consistency, and easily renders itself to the established 
multiscale and Bayesian techniques in statistics and systems engineering.  
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1. Introduction 
As businesses continue to realize the tangible and intangible benefits of sustainable 

development, there is a pressing need for systematic methods for environmentally conscious 
process engineering. Meeting this need requires expansion of the process engineering 
boundary beyond the process and its supply chain to consider the entire life cycle of a product 
or process (Bakshi and Fiksel, 2003).  Environmental life cycle assessment (LCA) has become 
a popular technique for considering the “cradle-to-grave” resource consumption and emissions 
of a product or process. It is a systematic way of collecting and analyzing information about 



 

various stages of the life cycle including, resource extraction, manufacturing, use, and final 
disposal or recycling.  Besides assessment, LCA can also play a crucial role in environmentally 
conscious process design (ECPD) by quantifying the environmental objective (Burgess and 
Brennan, 2001). Consequently, better methods for obtaining and assessing the life cycle 
inventory (LCI) are essential for improved LCA and ECPD. 

 
Since life cycles are large and complex networks of interconnected systems, it is 

virtually impossible to capture them accurately. The most common type of LCA focuses on the 
most important processes, but the use of such an, often arbitrary, boundary can introduce 
significant errors in the LCA results (Lave et al., 1995). LCA based on economic data 
considers the entire economic network, but the data are highly aggregated. Detailed 
engineering knowledge is another source of data.  However, this extremely detailed equipment 
scale data is usually computationally prohibitive for LCA. 

 
Available LCI are typically at different levels of aggregation and represent multiple 

spatial scales. Equipment scale data are at the finest scale, and the most accurate. Life cycle 
scale data are at an intermediate scale and represent averages of equipment scale data. 
Economy scale data are at the coarsest scale, and represent averages over industries in a 
sector. Recent Hybrid LCA methods attempt to combine the comprehensiveness of EIO-LCA 
with the greater detail and accuracy of Process LCA (Joshi, 2000).  However, such integration 
of data at widely different scales and with vastly different levels of uncertainty needs to be 
done carefully, if meaningful results are to be expected. Currently, no systematic framework 
exists for addressing the challenges of using multiscale data for obtaining the LCI for ECPD. 

 
This paper develops such a framework by treating LCA as a multiscale statistical data 

fusion problem. It relies on the latest advances in deterministic and stochastic multiscale 
methods to develop a systematic framework for obtaining the life cycle inventory of products 
and processes. This approach uses a tree representation to connect data and models at 
multiple scales. The proposed framework ensures satisfaction of intra-scale and inter-scale 
model and data consistency, and easily renders itself to both, deterministic and stochastic 
formulations. The rest of this paper provides a brief background of LCI, and describes the 
MSLCI methodology.  

2. Existing Methods for Life Cycle Inventory 

2.1. Economy Scale 
Data at this scale represent the entire economy or interaction between several economic 
sectors. Economic Input-Output data are compiled for many countries and contain information 
about monetary exchanges between multiple sectors. National statistics also provide 
information about resource use and emissions for these sectors. Such data form the basis of 
Economic Input-Output LCA (EIO-LCA) (Lave et al., 1995). An important advantage of this 
approach is that it considers the entire national economy and avoids defining an arbitrary 
boundary around selected processes. However, data representing each sector are significantly 
aggregated to maintain computational tractability. Thus, EIO-LCA uses a relatively complete 
network, but at a coarse scale. 



 

2.2. Life Cycle Scale 
This is the most popular scale for LCA. It focuses on the most important processes in a life 
cycle, and relies on detailed inventory about the inputs and emissions of the selected 
processes. Extensive databases of life cycle inventory continue to be compiled (Curran, 1996). 
Such Life Cycle Inventories usually represent average industry numbers for a selected 
geographical region and product or manufacturing process. Thus, data at the life cycle scale 
are more detailed than data at the economy scale, but fail to capture details about an individual 
process or equipment. Despite its popularity and standardization, the biggest shortcoming of 
Process LCA is that its results depend on the selected boundary. Consequently, it is not 
difficult for different users to obtain different LCI results for the same product. 

2.3. Equipment Scale 
Process engineering knowledge and tools enable the development of detailed and relatively 
accurate models of individual equipment and flowsheets at this fine scale. Public domain 
studies are also available for most processes and reasonably accurate simulation is possible 
via software packages. The benefits of using such information for LCA has been identified and 
“gate to gate” inventory models for many chemical equipment and processes are being 
developed (Jiménez-González et al., 2001). Although performing LCA at this fine scale is 
practically infeasible, the available data could be utilized in LCA studies for environmentally 
conscious design and manufacturing. Unfortunately, most LCA studies tend to ignore this trove 
of information. 

2.4. Hybrid LCI 
Having realized the shortcomings of existing methods, many researchers are combining the 
best features of LCA at different scales. Most efforts are hybridizing the comprehensiveness of 
the economy scale with the greater detail of the life cycle scale (Joshi, 2000). Many variations 
of hybrid LCA methods have been developed. Examples of such methods include the use of 
Process LCA to compensate for the absence of some sectors such as, the use phase in EIO-
LCA; or the use of EIO-LCA at the boundary of Process LCA; or disaggregation of existing 
economic sectors to include more detailed information. Most hybrid LCA methods usually do 
not utilize equipment scale information. Moreover, integrated hybrid analysis is completely 
deterministic in nature, and cannot incorporate stochastic information and subjective and 
expert knowledge. The multiscale framework proposed in the next section can overcome many 
of these shortcomings. 

3. Multiscale Statistical Framework for LCI 
Since LCI information is available at multiple scales, a rigorous framework may be developed 
by treating it as a multiscale statistical data fusion problem. The multiple scales may 
correspond to the finest equipment scale, coarser plant or life cycle scales and the coarsest 
economy scale.  Such a framework is described in this section for deterministic and stochastic 
multiscale LCI (MSLCI). 

3.1. Deterministic MSLCI 
Deterministic multiscale LCI may be formulated as the following data fusion and inference task. 
 



 

Given: (1) Data at multiple scales represented by the set of life cycle state 
variables, Ym, m=0,…,L with m = 0 representing the finest scale (equipment), 
and m=L representing the coarsest scale (economy). 

 (2) Models relating the data at each scale (intra-scale models), Φm(Ym) = 0 
Determine: Estimated values of life cycle state variables for system at selected 

scale, m, based on knowledge at all scales, Ym,0:L. 
 

Ideally, the estimated state variables obtained by combining data at multiple scales should be 
consistent with physical laws and maximally utilize available data and models at all scales. 
Since the assessment of individual processes or life cycles at any scale involves analysis of 
networks, each intra-scale model is represented by network algebra equations of the same 
general form. Assuming static networks, the total output of the nodes of a network at scale m, 
xm, is related to the output leaving the network, fm, and the interactions between the nodes, Am 
as, 

 xm = [Im - Am]-1fm = Tmfm              (1) 

The emissions from this network may be determined as, em = RmTmfm, where Rm represents 
the emissions per unit of network output. For a network of nm nodes, xm and fm are nm × 1 
vectors, while Am, Tm, and Rm are nm × nm matrices. Equation (1) is commonly encountered in 
network algebra, including economic input-output (EIO) analysis, and would be available at 
scales, m = 0, …, L. The set of LCI state variables, Ym used in the problem formulation and in 
Equation (1) represents all the variables in the previous equations, that is, 

 Ym = {xm, fm, em, Am, Rm, Tm}              (2) 

The available data and MSLCI problem may be represented as grids at different resolutions, 
which are connected by edges, as shown in Figure 1. The approach for fusing the available 
data in a deterministic setting consists of two steps that go up and down the tree. 

Fine-to-Coarse (FtC): Identify coarser scale nodes that are relevant to the 
selected node by propagating information about inputs and outputs from finer to 
coarser scales. 
Coarse-to-Fine (CtF): Refine relevant coarse scale sectors identified in FtC to 
finer scale by using available finer scale data. 

The FtC step is the information-gathering step, while CtF is the computation step. For 
example, consider the need for life cycle inventory relevant to equipment represented by unit, 
S3(0), shown lightly shaded in Figure 1. The FtC step would identify the coarser light shaded 
node, S2(1) as the parent, and obtain coarser scale information for all the inputs and outputs of 
the equipment, S3(0).  This life cycle information would get propagated to the coarser scale of 
the economy to identify the relevant economic sector, shown as S1(2) in Figure 1. 

 

Y1(2),1(2) = Y1(1),1(1) + Y1(1),2(1) + Y2(1),(1) + Y2(1),(1)                       (3) 
Y1(2),(2) = Y1(1),(2) + Y2(1),(2)                         (4) 
Y2(2),(2) = Y2(2)1(1) + Y2(2),(1)                         (5) 
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Figure 1. Tree representation of MSLCI. 

 

In the CtF step, the coarsest scale sector identified in the FtC step, S1(2), is refined by 
using finer scale data and ensuring satisfaction of these conservation equations. These three 
equalities relate eight variables, indicating the need for additional information about the 
interaction of the refined sector with other sectors at the coarser scale. Iterative calculation 
between the coarse and fine scales may be required to reconcile data and models at all scales 
and to ensure consistency with physical principles such as conservation. These inter-scale 
models are represented by arrows connecting the scales in Figure 1. The grid at scale m = 1 is 
obtained by refining Sector S1(2) to S1(1) and S2(1) which requires satisfaction of the above 
balances along with the input-output models at each scale. Refining the shaded grids by 
combining data at multiple scales results in mixing of scales, as indicated by rectangles of 
different sizes at m = 0 and m = 1. The result of the MSLCI approach is represented by the grid 
at m = 0, which fuses the data at all scales. 

3.2. Illustrative Example for deterministic MSLCI 
This example illustrates the application of deterministic MSLCI approach. The case study 
considers following two scales 
• Coarser Plant Scale (m = 1) comprising two processes, namely a polymer manufacturing 

process PA(1) and an on-site power plant, PP(1)  
• Finer Equipment Scale (m = 0) comprising two unit operations, namely a reactor, R(0) and a 

distillation column, DC(0), that together constitute PA(1).  
Data at individual scales is available in the form of transaction matrices, Y(0) and Y(1), that could 
be in material or energy units. The flowsheet showing interactions between PP(1), R(0) and 
DC(0) is shown in Figure 2, whereas Equations (6) and (7) show transaction matrices for the 
equipment- and plant-scales respectively. 
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Figure 2. Flow diagram at scales m = 0 and m = 1 
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As seen from Equation (6) certain data points in Y(0) are missing because of lack of 
measurement. These data points cannot be estimated by solving balance equations at m = 1 
alone as there are more unknowns than equations. To estimate missing data points at m = 1, 
the inter-scale relations defined by Equations (3)-(5) need to be used. The corresponding 
algorithm resembles a W-cycle in multigrid analysis. The reconciled transaction matrix Y(0) can 
then be fused with Y(1) to obtain a hybrid transaction matrix Yhybrid shown in Equation (8). 
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Yhybrid combines all available information from the two scales and complies with inter- and intra-
scale balance constraints. Yhybrid represents deterministic MSLCI over Equipment- and Plant- 
scales. Similar matrices can be compiled at coarser life cycle- and economy-scales as well. 
These matrices have many potential applications for environmentally conscious process 
design, and can be easily extended to include stochastic information. For instance, the hybrid 
transaction matrices can be used to propagate the effect of a broad policy decision (e.g. 
imposition of pollution tax or capacity expansion target) on fine-scale design variables and to 
determine the effect of fine-scale process modifications on broader sustainability objectives. 
Following paragraph discusses theoretical aspects of stochastic MSLCI. 

3.3. Stochastic MSLCI 
One of the shortcomings of conventional LCA is its inability to evaluate confidence bounds on 
LCA results. As a result, the practitioner of LCA can get very different results depending on 
how the LCA problem is set up. This, at the least, undermines the credibility of LCA and 
prevents its wide-spread use as a rigorous decision-support tool. An important and attractive 
feature of the deterministic MSLCI approach described above is that it can readily handle 
stochastic information, and utilize the powerful approach of Bayesian hierarchical modeling 
(Wikle, 2003). The stochastic problem formulation treats all variables to be random and all data 
to be contaminated by noise or errors. Each of the variables used in the deterministic 
formulation, Ym are now considered to represent the noisy versions of the “true” or underlying 
but unknown values, mY~ , which need to be estimated. Variables, mY~ , are equivalent to the 
“state variables” in the jargon of stochastic systems, and Ym represents the “measured 
variables”. The deterministic input-output models at each scale and those relating different 
scales may be represented, in general, as the following multiscale stochastic models. These 
models capture all the available inter- and intra-scale information along with various kinds of 
uncertainties. 

( )mmmm h ω= + ,~~
1YY         (9) 

( )mmmm g ν= ,~YY              (10) 

The function, hm(.) represents the inter-scale model, while gm(.) represents the intra-
scale relationship between the measured and underlying variables and the model at each 
scale. Thus, Equation (9) is the stochastic counterpart of Equations (3), (4), and (5), and is 
expected to be linear, while Equation (10) is the stochastic counterpart of Equation (1), and 
may be nonlinear because of the product term. The variables, ωm and νm represent the 



 

uncertainty in the data and models, respectively. Equations (9) and (10) are in the standard 
form commonly encountered in nonlinear estimation problems (Chen et al., 2004). Due to 
recent advances in statistics such as Markov Chain Monte Carlo methods and particle filtering, 
it is becoming possible to find the Bayesian solution to these equations in an efficient manner. 
The proposed approach for solving the Bayesian MSLCI problem will aim to obtain properties 
of the posterior distribution which may be written in a scale recursive form via Bayes rule as, 

( ) ( ) ( )
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YY =         (11) 

The left-hand side of Equation (11) is the posterior probability of the unknown 
quantities at the finest scale, given information at all scales. Equation (11) shows that this 
posterior probability may be determined from the data at scale, m = 0, represented by the 
likelihood, ( )00

~| YYP , and the information about the unknown quantity available from data and 
models at other scales, as represented by the prior, ( )LP :10 |~ YY . The posterior represents the 
distribution of the unknown quantities based on capturing all the data and models at all scales.  
Equation (11) represents recursion from the parent node to the children or the coarse to fine 
(CtF) change of the posterior. A similar equation may be written for the opposite direction or 
fine to coarse (FtC) change. These steps may be combined in different ways depending on the 
nature of the problem to result in a stochastic multiscale algorithm for life cycle inventory. 

 
If Equations (9) and (10) are both linear with additive noise and Gaussian distributions, 

the posterior will also be Gaussian, and the above algorithm will become multiscale Kalman 
filtering (Chou et al., 1994). However, in general, due to the product terms in Equation (1), the 
state equation is not likely to be linear. In this case, the distributions will be determined via 
hierarchical methods based on MCMC methods. The multiscale approach described in this 
section will focus primarily on fusing life cycle inventory information at multiple scales. 
 
3.4. Illustrative Example for stochastic MSLCI 
  
 This example builds upon the illustrative example presented in Section 3.2 by adding 
life cycle and economy scales. Thus R(0), DC(0) and PP(1) together comprise plastic and 
synthetic material manufacturer α(2). β(2) represents basic organic chemical manufacturer in the 
supply chain of α(2). PR(3) represents the petroleum refining sector at the coarsest economy-
scale, m = 3. For this system, the stochastic transaction matrix is shown in Figure 3 along with 
CO2-emission distributions for each of the system units. For this example all distributions are 
assumed to be Gaussian with their means corresponding to the values in the deterministic 
version. The stochastic components arise on account of various types of errors such as 
measurement error, aggregation error, sampling error and subset error. Figure 3 also shows 
error estimates in embodied CO2 in the outputs from the reactor, R(0), and the distillation 
column, DC(0), due to arbitrary truncation of the system boundary. A narrow plant-scale system 
boundary leads to 89.9% and 88.5% truncation errors in embodied CO2 in the reactor and 
distillation column outputs respectively. A broader life-cycle scale system boundary reduces 
these errors to 60.3% and 62.6% respectively, and the broadest economy-scale system 
boundary eliminates the truncation error altogether as it utilizes all available information. 
However, other types of errors such as measurement error, subset error, sampling error etc. 
still exist at all scales and can be estimated in a similar manner. Such stochastic analysis can 



 

assist designing of industrial systems under uncertain policy scenarios, changing socio-
economic conditions and environmental regulations.  
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Figure 3. Illustrative example for stochastic MSLCI 

4. Conclusions 
This paper proposes a new framework for obtaining environmental life cycle inventory 

information by utilizing data and models at multiple spatial scales. Such information is essential 
for environmentally conscious process design and for improving the sustainability of industrial 
activities. The proposed framework fuses data at scales of individual equipment, process life 
cycle, and economy. Information about different kinds of uncertainties may be readily 
incorporated in this approach as well. 
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