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1. Introduction 
 Process heaters are major sources of nitrogen oxides (NOX), which are ozone 
precursors and known sources of health and environmental problems. Most governments 
regulate NOX emissions from industrial plants. To comply with these regulations, NOX 
emissions must be monitored and controlled. Typically, NOX emissions are monitored using 
on-line hardware analyzers called continuous emissions monitoring systems (CEMS). 
Generally, CEMS are costly to install and difficult to maintain. Predictive emissions 
monitoring systems (PEMS) have been used as alternatives to CEMS. One type of PEMS 
predicts NOX emissions using detailed kinetic models that include approximately 3,000 
reactions and 200 species along with calculated temperature and concentration fields for 
the major gas components (e.g., CH4, O2, N2, CO2, H2O). The accuracy of developed 
models has been found to strongly depend on the quality of the assumptions and the 
relevance of the physical/chemical models. 

Another type of PEMS predicts NOX emissions by using empirical predictive models 
based on engineering correlations of measured NOX effluent data for a variety of operating 
conditions. Fuzzy logic, neural networks, and regression models have been used to 
estimate emissions (Collins & Terhune, 1994; Kocijan, 1997). Empirical predictive models 
for NOX emissions are gaining acceptance and approval in industrial applications such as 
refinery and petrochemical plants, power plants, incineration facilities, and pulp and paper 
mills. In these PEMS, neural network models have been preferred because they can handle 
the several non-linear terms that must be included to maintain estimation accuracy over the 
entire operating range (Baines et al., 1997). However, although neural network models can 
cover the full operating range of the equipment, they tend to produce valid emission 
predictions for only a short period because (i) combustion profiles change due to variations 
in the fuel quality, heating load, slag/soot deposits, ambient conditions, and the conditions 
of the plant equipment; and (ii) the overall plant operation may change due to capital 
projects and process modifications undertaken to improve the operation of heaters and 
boilers. If the changes push the process outside the model, the predictive model must be 
rebuilt and revalidated. Multivariate statistical process control (MSPC) has been widely 
employed as an alternative of neural network models because it can offer the prompt model 
adaptation and robust estimation of emissions (Quinn, 2002, Wang et al., 2003). Partial 
least squares (PLS) regression is one of most the powerful and frequently applied 
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techniques in multivariate statistical process control when process variables are highly 
correlated. 

This paper aims to propose an adaptive predictive emission modeling method based 
on the performance assessment criteria of PLS models. To evaluate the performance of the 
regression models, multiple cumulative sum (CUSUM) charts for T2 statistics and prediction 
errors are proposed based on a median filter in a moving window approach. The proposed 
CUSUM charts not only evaluate model performance in sample-wise or batch-wise, but also 
help to select the updating target or to take an updating action. The updating action is 
performed with either partial adaptation such as mean shift or complete one such as batch-
type PLS remodeling. Once the update action is determined, the adaptive modeling can be 
executed in a robust and a computationally efficient manner so that the time points to 
update a model are detected through the charts and the model is updated only at the points, 
not recursively. 
 
2. Process description 
 An industrial refinery fired heater is introduced to illustrate the proposed method. 
The fired heater plays a role preheating crude oil and lessening the heat duty of a main 
distillation column in the refinery plant. The process variables for the fired heater include (i) 
inlet feed conditions; (ii) outlet conditions; (iii) inlet conditions of fuel and air; (iv) flue gas 
conditions; and (v) combustion conditions within the heater box (temperatures, pressures, 
excess O2 composition). Fuel gas and/or oil are supplied to each heater. Liquefied natural 
gas (LNG) is used as the fuel gas, and Bunker-C as the fuel oil. The concentration of NOX 
emitted from the common stack should be below 200 ppm according to South Korean law. 
The concentration of NOX is measured on-line with an infrared (IR) gas analyzer in CEMS. 
The pollutant emissions can also be monitored with a software-based analyzer called the 
predictive emissions monitoring system (PEMS). 
 
3. Proposed predictive modeling method for adaptive monitoring 
3.1. Performance assessment of PLS models 

Performance assessment method consists of two phases, namely the design of a 
robust multiple CUSUM chart and the assessment of the model performance using this 
chart. To evaluate PLS model performance, two performance measures are proposed: 
window-based robust T2 statistics and absolute prediction error (APE). Each measure uses 
median known as one of robust statistics. For test data of a window size L, XL, the robust T2 
statistics,  is defined as: 2

RT

}XPPΛX{ L
T1T

L
−= medianT 2

R   (1)  

where  is a diagonal matrix containing the variances of the scores corresponding to the 
loadings, P. APE

Λ

R is as follows: 



APER = }BXY{ LL −median   (2) 

where YL is response data matrix corresponding to the XL. 

Cumulative sum (CUSUM) charts have been used in industry to detect a change in 
the quality of a manufactured product. CUSUM charts, while not as intuitive and simple as 
Shewhart charts, have shown more efficient performance in detecting small shifts in the 
mean of a process. The tabular CUSUM, used in this study, works by accumulating 
derivations from zero for  and APE2
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where K is usually called the reference value. Note that C

RPEA
1-nC

n accumulates deviations from the 
target value that are greater than K, which means that Cn signals only if the deviations is 
significant. Figure. 1 illustrates the multiple CUSUM plot of  and APE2

RT R for assessing 
model performance. The four cases classified with the decision limits of the two charts are 
identified according to the patterns of the degradation of model performance as shown in 
Figure 1. 

 

Figure 1. Multiple CUSUM plot of  and APE2
RT R used for the model performance assessment 

The performance monitoring and assessment procedure for a PLS model are 
carried out as follows. (i) Collect the test data of window size, and then estimate the 
medians of the T2 and APE from Eq. (1) and (2) for the data. (ii) Compare the calculated 
measures with the decision limits. If the values exceed the limits, go to the next step. 



Otherwise, estimate the medians of new test data including the new data of block size, and 
then iterate this step for the continuous monitoring of the model performance until detecting 
the model violation. (iii) Assess the model performance depending on the monitoring result 
and classify it into one of following four cases as seen in Figure 1. Region I represents the 
normal region of model performance. In the region II, the model has a good prediction 
power, but the predictor variables go out of the normal region due to the extrapolating 
feature of the regression model. Region III means the significant change in the relationship 
between the predictor variables and response variables or among the only predictor 
variables. Operating conditions are similar to those of the modeling data. For example, 
analyzer malfunction of response variables can be identified as one of causes to the signals 
in the region. Finally, region IV signals the significant changes in the process behaviors 
and/or in the analyzers’ characteristics accompanied with the poor prediction power. 
 
3.2 Adaptive PLS regression modeling 

 The proposed adaptive modeling method proceeds according to the following steps: 
(1) checking the model performance; (2) detecting model violation; and (3) updating the 
model. It is different from the recursive PLS modeling method, in that the adaptation 
process is executed only when model violation is detected. This method offers better model 
adaptation and lower update frequency. 

First of all, the model performs partial adaptation depending on the results of the 
model performance assessment. In the partial adaptation of the model parameters, the 
update targets are the mean and variance of the predictor or response variables, and the 
correlation between the latent variables in the PLS model. Partial model adaptation is based 
on the industrial observation that the covariance structure for minor changes in the process 
operating conditions is similar to its original structure (Hwang et.al, 1999). When the 
partially updated model does not work well, all of the model parameters, including the PLS 
regression coefficients, are updated using the previous PLS model parameters, in a 
recursive manner. 

 
Partial model adaptation The update target in the partial model adaptation is 

determined according to the result of the model performance assessment. Both the mean 
and standard deviations of the predictor variables and response variables often change in 
the case of a small shift in the process operation, which causes the performance of the PLS 
model to be degraded. Therefore, updating both the mean and standard deviation can 
improve the model’s performance. In the case where the correlation structure among the 
variables is violated, the computational load required for updating all of the PLS parameters 
is high. The inner relation of the score vectors in the reduced space can be refreshed. The 
update of the regression coefficients between T and U can take the place of the 
insignificant computation of all the PLS model parameters. 



If the number of samples in the old modeling set is N0 and the number of samples in 
the new updating block is N1, then the adjustable update values j,1x  and 

j,1xσ of the 
mean j,0x  and standard deviation

j,0xσ , respectively, for the jth variable of the x data are 
given by  
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The second term in Eq. (5) can be replaced by the median of xj, in order for it to be 
robust to outliers. For the y data, the formula is the same as that described above, with y 
being substituted for x. The effect of new updating blocks can be weighted more heavily, by 
increasing the number of samples and the block size, N1, and vice versa. Also, the 
adjustable update values, ba,1, of the inner regression coefficient, ba,0, calculated from the ta,0 
and ua,0 score vectors for the ath latent variable, can be represented by the following 
equation: 

ba,1 = ba,0 +    (7)  

where t
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ia,1 and uia,1 are the elements of the ta,1 and ua,1 score vectors obtained from the newly 
gathered data, respectively. 
 

Complete model adaptation based on block-wise recursive PLS algorithm 
Partial model adaptation is more effective in the case of a small shift from the operating 
boundary of the original model. However, the operating region moves gradually outside of 
the original region, in the case of significant process changes, such as catalyst deactivation, 
equipment aging, sensor and process drifting and cleaning. Hence, complete remodeling is 
required in such cases. Using the previous model parameters, the block-wise recursive PLS 
algorithm is introduced (Qin, 1998). Updating the PLS model involves performing PLS on 
the existing model and the new sub-model. Let {T, W, P, BD, Q} be the PLS results for data 
{X, Y}, where T is the score matrix, W is the weighting matrix used in PLS, P and Q are 
loading matrices for X and Y, and BD is a diagonal matrix of inner model coefficients. From 
the theorem proposed by Qin, assuming two PLS results, {T0, W0, P0, BD0, Q0} for data {X0, 
Y0} and {Tn, Wn, Pn, BDn, Qn} of the new block data {Xn, Yn}, performing PLS regression on 

 results in the same regression model as that obtained by performing PLS ⎥
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regression on the data pair . The new PLS result for the data pair taking into 

consideration the loading coefficients and inner regression coefficient is denoted as {T
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P1, BD1, Q1}. If the model performance is still degraded after updating, the PLS model is 
successively updated with the next new sub-models. 
 
4. Results and discussion 
4.1. Performance assessment of the NOX emission model 

Before the proposed approach is applied, an initial PLS regression model should be 
established. A dataset of 4020 samples was used to build an initial PLS model. The 
parameters for the performance assessment and the adaptive modeling can be obtained 
from the initial model and historical long-term data. The window size was set to 720 
sampling points, and the block size was selected as one half of the window size, i.e. 360 
sampling points. Starting from the initial PLS model with the predefined parameters, the 
models were assessed using industrial data recorded over a period of three months. The 
median value of every 360 samples was marked onto the specific region of the CUSUM 
chart. Figure 2 illustrates a multiple CUSUM chart for two performance measures during a 
period of approximately one month. It demonstrates the extrapolation feature of the model, 
which means that the model has good prediction power, but that the diagnostic 
performance obtained using the previous model can be degraded, due to the mean shift of 
the predictor variables resulting from the change in the heater conditions. To diagnose the 
detailed causes, the contribution plot analysis of  for a point indicated with an arrow in 
Figure 2 was performed. The contribution plot in Figure 3 shows that the fifth variable, 
namely the flow rate of the crude oil entering the heater, has a high value, which implies 
that there is an increase in the heating load. This caused the means of the process 
variables to shift out of the reference conditions, however the covariance structure between 
the heater operating conditions and NO

2
RT

X emissions remained consistently unchanged, 
because the APER values in Figure 2 were below the decision limit. 

 
4.2. Adaptive NOX emission modeling 

 The predictive NOX emissions model was updated during a three month period 
whenever the operating mode changed significantly. Figure 4 shows the result of the 
performance monitoring for the predictive model. Most of the points for the two measures 
are under the decision limits. This indicates that the model was well adapted to a process 
shift of over 1σ. Numerous CUSUM peaks are shown, due to the process shifts followed by 
the adaptation actions of the model. The proposed method was compared with the block-
wise recursive PLS algorithm in a moving window approach (MW-RPLS). The prediction 
results of MW-RPLS are depicted in Figure 5, along with the results of the proposed method. 



Except for a couple of points, the prediction results are almost identical. The 338th sample, 
which is marked with an arrow, shows a point for which the prediction accuracy is worse 
than that of the proposed method. The concentration of NOX emitted from the stack should 
be below 200 ppm according to the prevailing environmental regulations. The MW-RPLS 
approach is susceptible to producing false alarms, however the proposed method can avoid 
such false alarms, owing to its updating only the scaling parameters for each new block, 
which enables the model to adapt more rapidly than the MW-RPLS method. In the 
successive change of operating conditions, the MW-RPLS approach may not take account 
of recent status changes, because of its updating based on old long-term data with the 
window size used for the model update. Also, the proposed method requires a much lower 
update frequency. In this case study, the update frequency used for the scaling parameter is 
30, and that used for all other model parameters is 12. It is shown that the proposed 
approach is much more efficient than the previous approach, which is updated 107 times. 

 

 
Figure 3. Multiple CUSUM chart for the two 

performance  measures during a specific period. 

 

 
Figure 5. Results of monitoring the model 

performance for the proposed adaptive 

modeling scheme 

 
Figure 4. Variable contributions for the specific 

point indicated with an arrow in Figure 3. 

 

 
Figure 6. Comparison of prediction results of the 

proposed method with those of the block-wise 

recursive PLS modeling scheme 
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