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Multi-variable predictive control (MVPC) can now be considered to be a mature 
technology with proven benefits, particularly in the Hydrocarbon Processing Industries.  
This paper outlines the current status of this technology and its typical applications.  New 
directions are described, including multi-unit optimisation, the use of non-linear models 
in linear control, improved tools for inferential calculations, more efficient step testing, 
the human machine interface and performance monitoring of an MVPC.  Future 
challenges for the technology are discussed.  Copyright © 2003 IFAC 
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1. INTRODUCTION 
 
Linear multi-variable predictive control may now be 
considered a mature technology, particularly in the 
Hydrocarbon Processing Industry.  Over 2500 
applications of linear MVPC are reported in the 
refining and petrochemicals fields (Qin and 
Badgwell, 2003).  Typical payback periods for such 
applications are in the region of two to twelve months 
(Taylor et al., 2000).  The applications typically 
utilise a linear plus quadratic program to move the 
process toward local optimal operation.  Many 
applications use some form of soft sensor to provide 
missing physical or chemical property values. 
 
More recently focus has been placed on the area of 
multi-unit optimisation, in an attempt to reach a 
globally optimal operating point (Friedman, 2000).  
Non-linear MVPC remains a relatively new field, 
with 35 applications reported in refining and 
chemicals (Qin & Badgwell, 2003). 
 
Emphasis is now being placed on more efficient 
project execution, in order to reduce costs of 
implementation.   The models required for the MVPC 
are typically obtained by step testing the plant, 
followed by model identification. Suppliers of MVPC 
are currently attempting to streamline this process, by 

employing constrained stepping techniques, using 
psuedo-random binary signals (PRBS) to move more 
than input, and by performing identification during 
the testing procedure. 
 
The development of an operator friendly human 
machine interface (HMI) has been a neglected area.  
Research in this field indicates that operators control 
by exception and require an HMI that allows this. 
 
 It has often been observed that the benefits provided 
by an MVPC application degrade with time.   This 
can be due to process changes causing model 
mismatch, changes in operating points, under trained 
operations personnel or many other factors.  
Techniques for monitoring the performance of the 
application easily are required, so that busy control 
engineers can focus their efforts on the poor 
performers. 
 
The remainder of this paper explores the newer areas 
described above in more detail.  Directions for future 
developments are suggested. These are focussed on 
continuing to achieve benefits for the users of MVPC, 
rather than purely on application of new technology. 
 
 

 



     

2. MULTI UNIT OPTIMSATION 
 
One of the main challenges limiting the increased 
application of MVPC techniques is the extension of 
the optimisation scope.  Typically one or more 
MVPCs will be applied on one processing unit, and 
the unit will be locally optimised.  In general the unit 
is part of a larger processing plant, and there is no 
guarantee that the local optimum for the particular 
unit is globally optimal for the area.   
 
One approach to this problem is to build a rigorous 
non-linear model of the area, and to use it to define 
target setpoints for the individual units.  This 
approach is attractive because non-linear effects are 
included.  From a practical perspective this technique 
has largely been unsuccessful.  The single biggest 
drawback has been the high cost of developing and 
maintaining the model.  In addition the models used 
are generally of the steady-state variety.  Any 
dynamic effects are neglected, and this causes a 
mismatch between the calculated setpoints and the 
current operation of the MVPCs. The calculated 
solution may not be feasible in a dynamic sense. The 
result is that the setpoints have to be filtered in some 
way before being implemented, meaning that the 
solution is non-optimal.  A further limitation is that 
the applications have to perform some form of steady-
state detection before executing.  If steady-state is not 
detected optimisation is skipped.  Since the 
applications typically run on a one to two hourly 
basis, this has a deleterious effect on the optimisation 
of the area. 
 
A more recent approach to this problem has been 
discussed by Friedman (2000). For this method the 
existing linear dynamic models in the MVPCs are 
combined into a dynamic optimiser.  This approach 
has the disadvantage that the representation is linear.  
The advantage is that the existing models are re-used, 
implying a lower development cost.  The integration 
of the global optimiser and the MVPCs mean that the 
calculated targets are feasible.  Figure 1 shows a 
schematic view of this approach. 

The matrix is largely diagonal.  The off-diagonal 
elements represent the linkages between process 
units, for example where the product from one unit is 
the feed to another.  Combined constraints occur 
when the sum of some inputs (e.g. steam usage or 
feeds) must be kept above or below a certain value. 
 
This method has proved successful in constraint 
pushing type optimisation, and has recently been 
applied in a large South African plant to maximise 
production through the whole facility. 
 
 

3. NON-LINEAR CONTROL 
 

As mentioned previously the vast majority of MVPCs 
applied in the chemical industry have employed linear 
models.  These processes are almost all non-linear.  
The fact that these applications yield measurable 
benefits implies that the non-linearities are not of 
sufficient scale to render the linear controllers 
inoperative. 
 
Nevertheless there are processes for which non-linear 
techniques are required.  The production of polymers 
has traditionally led in this field.  The reasons for this 
include the fact that the reactions involved are 
extremely temperature sensitive, and that grade 
changes are fairly frequent. 
 
Three general approaches have been used to model 
non-linearity: 

a) Update the gains in a linear controller with 
gains calculated from a non-linear model 
(gain scheduling); 

b) Develop a rigorous non-linear model of the 
process, and apply it to determine some 
reference trajectory for the process; 

c) Develop an empirical model (typically 
neural network based) from plant data, 
which is then inverted for control purposes. 

 
From a practitioners point of view the first of these is 
the least  complicated to implement.  The models 
required can be quite simple, since only the key non-
linearities in the process need be modelled.  This 
method can be easily combined with the optimisation 
technique discussed above (Nath et al., 1999).   
 
Rigorous non-linear models are based on the mass 
and energy balances for the process.  Model 
parameters are either estimated from plant data or 
online using extended Kalmann filters.  These models 
have the advantage of not requiring plant step testing.  
Since they are based on first principles, these models 
are likely to be more reliable than empirical models 
when extrapolation is necessary.  This method is 
discussed in more detail by Young et al. (2001).  The 
initial development of the model remains a costly 
exercise. 
 
Empirical non-linear models are used in various 
forms. One approach is to use a non-linear neural 

Figure 1 Global Optimisation Matrix 
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network (NNN) to represent the steady-state of the 
system, and to model the time varying behavior using 
either first or second order terms.  The dynamics of 
the system are essentially fixed, while the gains vary 
as a function of the operating point.  It is claimed that 
the NNN may be derived from plant data, while step 
testing is still required for the dynamic portion. As is 
discussed by Zhao et. al. (1998), the model 
identification is a complex exercise.  
 
 

4. INFERENTIAL MODELS 
 
Inferential models are used in advanced control 
schemes when online measurement of a key value is 
not possible or is too expensive.  It has been 
estimated that some eighty percent of all refinery 
MVPC applications employ one or more of these 
models.  The model is updated with laboratory values, 
providing a slow feedback mechanism. 
 
Development is performed using historical plant data, 
and can be time consuming.  The ability to visualise 
data is key to the choice of a suitable model and 
powerful new methods are now available.  An 
example is shown in Figure 2.  This is a standard 
XYZ plot, with the addition of color to display a 
fourth variable.  A further view of the same data is 
shown in Figure 3.  This parallel plot is valuable for 
revealing normal versus abnormal operation. Tools 
are now available to quickly perform ordinary, 
weighted or partial least squares regression and to 
simply implement the models obtained online. 

 
 

5. PLANT TESTING 
 
Plant testing is another time consuming aspect of the 
implementation of MVPC solutions.  For an average 
sized controller two weeks of round the clock step 
testing may be required.  There is a strong economic 
incentive to perform the testing as efficiently as 
possible.  One advance has been the use of pseudo 
random binary sequences (PRBS), which have 
allowed more than one independent variable to be 
moved simultaneously. Figure 4 shows the sequence 
for three independent variables. There is a limit to 
how many variables can be moved simultaneously, 
since correlated moves can be introduced. 
 
The real issue with step testing is that it is difficult to 
ascertain when the testing for a particular variable is 
complete.  This question can be answered by 
performing online model identification during the 
step testing.  A statistical test can be applied to the 
models obtained.  When the models meet some 
confidence limit, step testing can be terminated on 
this variable, and started on a new one.  This has the 
potential for saving significant time and money. 
 
 

6. THE HUMAN MACHINE INTERFACE 
 

Traditionally the human machine interface (HMI) for 
MVPC applications have been listed based, with 
some use of colour to indicate variables near to or 
outside of limits.  Generally they have not been 
integrated into the underlying distributed control 
system displays.  Recent research into the way that 
operators control their units indicates that the process 
involved is one that could be called ‘control by 
exception’.  In other words the operator needs to be 
informed when something is unusual – otherwise the 
information is not useful.  Graphical interfaces that 
display this type of information can be developed, 
and can go some way to reducing the perception that 
advanced control schemes make the operator’s job 
more complex. 

Figure 2 Star Plot 

Figure 3 Parallel Plot 

Figure 4 PRBS Step-Testing 



     

 
An example of such an interface is shown in Figure 5.  
Color is used to indicate variables that are out of 
range, and the slopes of lines indicate current 
direction of movement.  The operator can click on 
any particular variable to investigate in more depth. 

 
 

7. PEFORMANCE MONITORING 
 

It is a well-known phenomenon that the performance 
of an MVPC scheme tends to degrade with time.  
Reasons for this include process modifications, 
changes in unit operating point and new operating 
personnel.  For whatever reason performance 
degrades, the situation can be reversed if recognised. 
It is thus important to institute a program to 
continually monitor the performance of the MVPC in 
order to maintain the benefits. 
 
Maintaining an MVPC can be a labour intensive 
process.  Tools are required that can give a quick 
overview of the health of the schemes on a plant, and 
to quickly identify those that are not delivering their 
full benefits.  Much like the HMI discussed above, 
tools must also be available to drill down to trace the 
source of the performance degradation. 
 
 

Fortunately the applications themselves generate the 
correct data to perform this task.  The challenge is in 
turning this data into information and in presenting it 
in an accessible way. 
 
Figure 6 shows a very simple graph, which displays 
online times and values of the objective function in 
the controller’s linear/quadratic program.  A drop off 
in either of these metrics is a first warning sign of 
problems with the application. 
 
The control engineer can dig deeper. If she suspects 
that the controller models have degraded, a plot of the 
model predictions and actual values can be obtained. 
As can be seen in Figure 7, this can indicate that a 
change in the model gains may be required. 
 
Plots of the independent variables and their limits can 
indicate if the operators are clamping the range in 
which the MVPC can operate.  This is often a sign 
that operator re-training is required. 
 

 
8. FUTURE CHALLENGES 

 
Having proved its value, MVPC now faces the 
challenge of how to extend the scope of its 
implementation, and to extend the benefits 
achievable.  Some of the developments the author 
sees in future are discussed below. 
 
 
8.1 MVPC in the Control System 
 
Currently most MVPC applications execute in a 
separate computer to the plant control system.  
Integration with the distributed control system (DCS) 
is achieved using an interfacing protocol.  This adds a 
degree of complexity to the implementation. 
 
Many users would prefer to have the MVPC 
algorithm embedded in the DCS.  It would then be as 
simple to implement, as it is to configure a PID loop.   
 
 
 
 

Figure 5 Graphical User Interface 

Figure 6 MVPC Performance Monitoring 

Figure 7 Model Predictions 



     

8.2 Self training models 
 
As mentioned before, plant testing is a time 
consuming exercise.  A method where the models 
could build themselves would be welcome.  The 
practical difficulties of achieving this goal are 
significant. 
 
A more tractable problem is the online estimation of 
the gains of the models.  This is essentially a steady-
state estimation process, and as mentioned in section 
3 is already performed for some non-linear 
controllers.   If a control engineer detects that the 
gains of the models are inaccurate, she may then be 
able to instruct the controller to re-calculate them.  
Changes in dynamics are much more difficult to 
detect.  Step testing is designed to provide a source of 
high power uncorrelated signals for model 
identification.  This data is seldom available from day 
to day operation. 
 
 
8.3 Automatic Mode Switching 
 
Some units may operate in distinctive modes, 
depending on current plant state.  For units such as 
these, MVPC applications that can detect the change 
in mode and alter their structure accordingly, would 
significantly increase their availability.  Currently the 
applications are normally switched off when the unit 
is not in its typical mode.  Agile manufacturing is a 
term much used, and the MVPC applications should 
likewise be suitably agile. 
 
It could be argued that current technology can achieve 
this goal using model-scheduling techniques.  In this 
method multiple plant models are derived for the 
different modes.  This can be complicated to 
implement, and the model-switching criterion is often 
heuristic.  A more integrated approach is required to 
bring this method into more common use. 
 
 
8.4 Start-up, Shutdown and Abnormal Situations 
 
The management of start-up, shutdown and abnormal 
situations is a problem somewhat similar to mode 
switching.  The majority of current MVPC 
applications have limited turndown ratios, and are 
switched off during abnormal plant operation.  It is 
exactly at these times that an advanced control system 
can yield large benefits, since plant operation is most 
difficult at these times.   
 
Non-linear control will almost certainly be required to 
achieve this goal.  From an economic point of view 
the applications will have to minimise the start-up 
period. During abnormal situations the aim should be 
to stabilise the unit, while still aiming for the most 
profitable operation possible.  During shutdowns the 
focus would be on maintaining unit production at 
specification for as long a possible. 
 

8.5 Integration with Plant Planning and Scheduling 
Systems 

 
Many chemical processing plants use some form of 
linear programming (LP) model to plan and schedule 
production.  Operating targets for the various units 
are communicated to operations.  These targets can 
include parameters such as unit feed rates and product 
specifications. Yield accounting is used to reconcile 
the flows through the plant, and the actual flows are 
compared with the planned flows. These applications 
together are often referred to as the Manufacturing 
Execution System (MES), and can provide 
information to the organisation’s Enterprise Resource 
Planning (ERP) systems.  This is shown 
diagrammatically in Figure 8, the so-called pyramid 
of control 
 
Despite the fact that some of these targets may be 
under the control of an MVPC, an automatic link is 
seldom implemented.  In order to implement a fully 
integrated system it will be necessary to have some 
form of the multi unit optimiser (discussed in section 
2) in place.  This is a matter of time scales; the plant 
LP operates on a time scale of days or weeks, and the 
MVPC of hours.  The multi unit optimiser bridges the 
gap between these, and should ensure that targets are 
feasible 
. 

 
9. CONCLUSIONS 

 
MVPC is no longer a new technology, and has proved 
its value in the processing industries.   It however 
largely remains a technology applied by specialists, 
on a unit-by-unit basis.  It is perceived as a 
technology separate both to the plant control system, 
and to the plant planning system.  Yet in reality it 
should be integrated with both.  The challenge going 
forward is not so much which particular flavour of 
MVPC should be applied, since this is likely to vary 

Figure 8 The Pyramid of Control 
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on a case-by-case basis.  Rather it is in achieving the 
seamless integration implied in Figure 8. 
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