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ABSTRACT

Feature-sets play an important role in the performance of speaker
recognition systems. Design of optimal feature-sets is still an on-
going research effort. One characteristic of feature-sets that is
known to have an impact on the performance of a speech tech-
nology system is the compression that is applied during the com-
putation of the feature-sets in the spectral domain. Most systems
use the mel-scale compression via the mel-spaced triangular fil-
ters. The mel-scale was designed from studying the response of the
basilar membrane in the inner ear to external frequency stimuli. In
this paper we investigated the impact of different levels of feature-
sets spectral compression on the performance of the support vec-
tor machine (SVM) classifier for speaker identification task. We
found that spectral compression does impact performance, and that
the best performance is obtained above the mel-scale compression.
This confirms results in literature that shows better feature-set per-
formance is above mel-scale compression for male speakers, al-
though the literature results were done in speech recognition and
not speaker recognition. The NTIMIT database New England re-
gion was used for the experiments and the gender spread favoured
males.
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1. INTRODUCTION

Speech technology systems uses a speaker’s voice to operate. In
speaker recognition systems the aim is to extract features from the
voice that are independent of the words (text) that the speaker is
saying. This differs from speech recognition task where the aim
is to extract features from the speech signal that are ideally inde-
pendent of a specific speaker. In both cases the aim is to extract
features that are relevant to the task, while in speaker recognition
the words form part of the noise in the system, for speech recog-
nition the individual’s characteristics are part of the noise. The
most common method used for feature extraction in speech tech-
nology research is called the mel-frequency cepstral coefficients
(MFCC). This will be discussed further in section 3 of this doc-
ument. The mel refers to the compression that is applied on the
feature-sets and the cepstrum refers to the fact that the features are
extracted in the cepstral domain. The mel is based on studies of
the response of the nerve cells along the basilar membrane in the
inner ear. Even though the speaker and speech recognition tasks
have different goals, in many state of the art systems the same
MFCC feature-sets are used for both. This indicates that the fea-
tures retains the individuals characteristics and the semantics of

the spoken text.
There has been some research work on evaluating speaker recog-

nition systems using the support vector machine (SVM) classifier.
Most of the work is in speech recognition and usually the clas-
sifier is used in conjunction with the generative classifier such as
the Gaussian mixture models [3, 2, 1, 5]. The SVM approach is
generally more expensive to compute than the GMM models. As
we have shown in [4] the SVM does outperform the GMM when
there is limited data. With more data the GMM approach is better.
This can be easily explained, since with the GMM the more data
is available the better are the estimates of means and covariances
of the speakers features, whereas in the SVM case more data may
not change the support vectors.

The impact of using different spectral compression levels in
the feature-set has not been thoroughly investigated. This is mainly
because of the risk of designing a spectral compression feature
system that fits a particular dataset (over-fitting problem), gender
sensitivity and most importantly the expensive computational re-
sources that are required for such experimentation.

In this paper the impact of spectral compression on the perfor-
mance of the Support Vector Machine (SVM) classifier is inves-
tigated. The SVM has emerged in recent years as a classification
technique resting on a firm theoretical basis of Statistical Learn-
ing Theory, and also exhibiting excellent empirical performance
over a wide range of classification problems. How it performs in a
speaker identification task when the spectral compression changes
is of interest.

2. SUPPORT VECTOR MACHINES

SVM classifiers operate in a way which at first may seem counter-
intuitive. Ultimately, classification involves dimensionality reduc-
tion, but the SVM first performs an implicit nonlinear projection
of the data into a feature space of very high, or even infinite, di-
mensionality, where it finds a linear or hyperplane decision bound-
ary. Over-fitting is controlled (and good generalisation guaran-
teed) through the principle of structural risk minimisation, as elab-
orated by Vapnik and others[10]. The empirical risk of misclassi-
fication is minimised by maximising the margin between the data
points and the decision boundary. In practice this criterion is soft-
ened to the minimisation of a cost factor involving both the com-
plexity of the classifier and the degree to which marginal points
are misclassified, and the tradeoff between these factors is man-
aged through a parameter (usually designated C ) which is tuned
through cross-validation procedures.



The nonlinear projection of the data is performed by means of
a ’kernel’ function. The commonest kernel (and the one used in
this work) is the Gaussian (or ”radial basis function”) kernel, de-
fined as K(x, y) = e−|x−y|2/(2σ2), where σ is a scale parameter.
The decision function is a weighted linear sum of these Gaussian
functions located at each data point (in this it resembles an extreme
case of a Gaussian mixture model). However the support vector al-
gorithm finds a sparse expansion in which most of the weighting
coefficients are zero (only those closest to the decision boundary,
the ”support vectors” are nonzero). The parameter C mentioned
above sets an upper bound on the value of any given coefficient,
limiting local distortion of the decision boundary by noisy data
point or outliers. Careful tuning of σ and C is needed to optimise
the predictive accuracy of the classifier.

The data used in these experiments is 32 dimensions. The
scale parameter σ2 = 32000 and error margin parameter is the
default C = 100 in the SVMTorch package which is used for
the experiments. The scale parameter was chosen after a limited
number of experiments. The values chosen for the SVM kernel
exceeds or matches the performance of the other popular classifi-
cation method, the Gaussian mixture models on the same dataset,
with limited training data.

3. PARAMETRIC FEATURE SETS

The usual method of calculating the feature-sets is called the mel-
frequency cepstrum coefficients (MFCC). The MFCC feature-sets
are computed as shown in Figure 1. The input speech signal is
sampled appropriately (that is low pass filtered and sampling at
over twice the Nyquist rate), then converted into the spectral do-
main via a discrete Fourier transform. In the spectral domain the
log magnitude of the complex signal is obtained and finally an in-
verse discrete Fourier transform is performed on the samples. The
resulting samples are in the quefrency or cepstral domain and are
called cepstral coefficients. Cepstral is a play on the words spec-
tral in reverse. If the inverse discrete Fourier transform was done
without the log magnitude section then the samples would have re-
verted back to the time domain, therefore the units used in the cep-
stral domain are seconds. The advantage of working in the cepstral
domain is that the pitch which is specific to the speaker is separated
from the vocal tract parameters (configuration) that are influenced
by the words that the person is saying. This is because in the time
domain the speech signal is a convolution of the impulse function
and the vocal tract parameters s(t) = w(t)∗v(t), where s(t)is the
output speech signal and w(t)is the triangular impulse train (usu-
ally modelled by a 1/3 rise and 2/3 fall signal) and v(t) is the vocal
tract configuration. In the frequency domain S[ω] = W [ω]V [ω].
By taking the log magnitude the function is simplified as a sum
and the two quantities can be easily separated. The pitch tends to
have a higher quefrency than the vocal tract parameters that are
changing very slowly (muscles and bone movements) as a result a
low pass filter is sufficient to separate the signals. In addition to the
Fourier transform it is known that the ear is sensitive to frequen-
cies differently, that is a difference between 500Hz and 800Hz is
more noticeable than a difference between 3000Hz and 3300Hz.
To capture this sensitivity a mel-scale compression is applied on
the feature-sets in the spectral domain. The most popular approxi-
mation of the mel scale is by O’Shaughnessy[7] which is

Fmel = 2595 log(1 +
fin

700
)

where Fmel is the frequency in mels and fin is the input frequency
in hertz. As discussed by Umesh et al[9] there are many other
functional approximations of this compression with minor opera-
tional differences although using the triangular filters is the most
common way of implementation. An example of the filters are
as shown in Figure 2. The filters are linear up to 1000Hz and
then become logarithmic in keeping with our hearing. The MFCC
contains important characteristics such as the separation of a pitch
from the vocal tract configuration. The vocal tract configuration
contains the phonemes (basic speech units).

The parametric feature sets (PFS) works similar to the MFCC
and can simulate the mel compression when certain combination
of parameters is used. It is flexible and easier to visualise the im-
pact of the parameters using the PFS than using the traditional mel-
scale. The PFS is defined by two parameters α and β related as in
the following formula

A ·

α∑

i=1

β
i−1 =

N

2

where N is the size of the analysis window and A is a constant,
which represents the first region of the spectrum. The next region
of the spectrum is Aβ , Aβ2, and so on. The spectral sampling is
the same within a region and since the regions grow bigger expo-
nentially when β > 1 a spectral compression is therefore created.
The α term is the number of divisions or regions. The mel-scale
compression can be seen as having many regions given that the
first region is linear and thereafter the filters are logarithmic.

The PFS can generate mel-scale compression but it is flexi-
ble as it allows other spectral compressions to be evaluated. Two
papers have shown how spectral compression can affect the per-
formance of the speech recognition systems [6, 8]. Figure 3 shows
different compressions that are obtained when different β param-
eters are used with α = 4. Notice that the mel scale compression
is closer to α = 4, β = 2.0. This is true only because the window
of 320 samples is used. Approximations depends on the window
length.

The algorithm of the PFS is a follows; Sample the input speech
signal as in the case of MFCC parameters. In the spectral domain
apply the log magnitude and filter the log spectra using a low pass
filter. This removes the high frequencies. Sample the log spectra
using the α and β parameters. Figure 3 shows the compression
that is achieved and Figure 4 shows the samples that are actually
obtained for various α and β parameters. It can be seen that when
β = 1 there is a uniform sampling of the spectra and as β increases
the lower frequencies are sampled more than the higher frequen-
cies. Finally like in the MFCC the actual coefficients are obtained
in the cepstral domain using the discrete cosine transform.

The PFS has been used in conjunction with the Gaussian Mix-
ture models to produce one of the highest performance on the
NTIMIT database.

4. EVALUATIONS

In this section the database used for the experiments and the ex-
periments performed are discussed.

4.1. Database

One problem of doing speech technology research is that it is dif-
ficult to compare results since there are so many differences in
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the reported experiments. There are differences in the front-ends,
back-ends, preprocessing stages and the database used. The Lin-
guistic Data Consortium (LDC) in the USA is attempting to col-
lect databases that will improve the chances of making valid and
meaningful comparisons between different systems. One of the
databases we obtained from the LDC is the TIMIT database. TIMIT
stands for Texas Instruments (TI) and Massachusetts Institute of
Technology (MIT), these are the two organisations that collected
the database. The database consists of 630 speakers from all over
the USA. The speakers are classed according to the region of the
USA where they grew up as this is assumed to be an important
factor in determining a person’s accent. All the speakers speak
American English.

Each speaker spoke ten utterances. All the utterances are dif-
ferent across speakers except utterance 0 and 1, which are com-
mon. These common utterances were not used in the results re-
ported in this paper. Utterances are on average three seconds long.
Current state of the art speaker identification systems have no prob-
lem with the TIMIT database. That is when using 8 utterances to
train a speakers’ model and just using the other 2 utterances for
evaluations, current PFS and MFCC based systems can correctly
identify all the 630 speakers in the database. As such the TIMIT
database is no longer used for evaluation of speaker identification
systems.

The NTIMIT database is based on the TIMIT database, and
the N before TIMIT stands for Noisy. The NTIMIT database was
passed on the telephone network. It is not a simulation but an ac-
tual speech through the telephone network. The best speaker iden-
tification performances on the NTIMIT database is around 70%
and not 100% as in the case of TIMIT. The NTIMIT database rep-
resents a challenge due to unpredictable channel noises. In the
reported experiments only the Region 1 train speakers database
is used which has 38 speakers. The main hindrance from experi-
menting with the SVM classifier is that it takes very long time to
enrol the speakers (make the models) and to do evaluations.

4.2. Experiments

The problem with SVM is that the computational burden is exces-
sive compared to other competing methods such as the Gaussian
mixture models (GMM). The other limitations is extra unknown
parameters that are to be specified such as the standard deviation
(scale) parameter σ2 and the margin of error parameter C in the
case of the Gaussian kernel as used for this experiments . The ex-
periments took a very long time to complete as such only region
dr1 (New England region, train set ) of the database was used. To
obtain a single value of performance took over 8 hours on a 1.7
GHz Pentium IV machine and it is dependent on the amount of
enrolment data.

Two experiments were done. In the first experiment the system
was trained with 3 utterances and tested with four utterances. The
was repeated 4 times. The results shown are the averages of the
performance results, each data point was computed from at least
16 values, except for values from β = 4.8 which were computed
from 12 or less number of values. Table 1 shows which utterances
were used in enrolment (training) and which were used in evalua-
tions(testing). There is no particular reason why certain utterances
were chosen for testing and training. This was done randomly.
The results shown on Figure 5 are the average identification rates
of all these tests and short lines show the standard deviation of
those results.

Enrol Utterances Evaluation Utterances
2,3,4 5,6,7,8
4,5,6 2,3,7,8
5,6,9 2,3,7,8
7,2,6 3,4,5,8
3,7,9 2,5,6,8

Table 1. 3 enrol and 4*1 tests

Enrol Utterances Evaluation Utterances
2,3,7 (4,5), (8,9)
2,3,4 (6,7), (8,9)
4,5,6 (2,3), (8,9)
5,6,7 (3,4), (8,9)
4,5,9 (2,7), (7,8)
3,6,7 (4,5),(8,9)
7,8,9 (3,4), (5,6)

Table 2. 4 enrol and 2*2 tests

For the second experiments the number of training utterances
were increased. A similar curve is obtained although it shows
higher identification rates as the number of training utterances is
four and not three. Also two utterances are used for evaluations
at a time instead of one at a time as in the previous experiments.
The utterances used for the experiments are shown in Table 2. One
may note the eighth and ninth (8,9) utterances are always used for
evaluations. This is because of a bias from researchers using the
TIMIT databases towards using these last two utterances for eval-
uations in general1.

Figure 5 shows the performance when different β values with
α = 4 fixed. The results show that spectral compression does in-
deed have an impact on the feature-sets. In the case of no spectral
compression(α = 4, β = 1.0) the identification rate of the system
was 41.6% (50.4% for the second experiment). As soon as com-
pression is added the performance increased to just under 47%. As
compression is increased closer to the O’Shaughnessy mel scale[7]
formula performance increases. This increase is, however, not as
great as at β = 2.4. For the second set of experiments the per-
formance was 72.7% at β = 2.0 and 73.4% at β = 2.4. The
increased performance at this compression β = 2.4 can be under-
stood in several ways. Firstly the region used in the database is
dr1 and this is the one with the fewest number of speakers in the
database, and more importantly the gender spread is 24 males as
compared to 14 females. Our earlier work [6] and that of [8] shows
that spectral compression is sensitive to the gender population and
therefore the peak here is most likely the results of the gender pop-
ulation that is used in the test set than absolute performance. Even
though in the above cited papers the work was on speech recogni-
tion rather than speaker recognition but it is reasonable to assume
that it does have the same impact. The Gaussian kernel SVM
used here was not exhaustively evaluated for optimal parameters
(σ2, C), but the results show that spectral compression does affect
identification rates and therefore the results confirms the results
already obtained for speech recognition in literature[6, 8].

1This was from a discussion I had with Douglas Reynolds of MIT.



 35

 40

 45

 50

 55

 60

 65

 1  1.5  2  2.5  3  3.5  4  4.5  5  5.5  6

Id
en

tif
ic

at
io

n 
R

at
e 

(%
)

Beta parameter

Spectral compression on SVM classifier

Identification Rate (%)

Fig. 5. Identification rate as a function of β with α = 4.

5. CONCLUSIONS

The following conclusions can be drawn on the results. Firstly
that spectral compression does improve the performance of the
system. Too much spectral compression has the possibility of re-
ducing performance. The surprising result from the experiments
is that the best performance is obtained at a higher compression
level (α = 4, β = 2.4) than the mel-scale compression. This is
most likely the artifact of the database that was used in the experi-
ments. The most likely reason for best performance at this higher
compression level is that the database is about 63% males. Earlier
work has shown that features-sets with higher spectral compres-
sion suits male speakers better. The major weakness of using the
SVM classifier is the computational burden. It seems that it should
only be used in a support role as a secondary classifier rather than
the main classifier given the computational burden. This is the
approach that many researchers are adopting as shown in these
papers[1, 2]. However, it is pleasing to see that results in literature
on the impact of spectral compression are also confirmed when the
SVM classifier is used in speaker identification task as should be
expected. It shows that indeed spectral compression is important
independent of the classifier used.
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