
Proceedings of the First African Control Conference 
 

Quantitative Feedback Design for Systems with Probabilistic Parameterisations 
 

Edward Boje 
School of Electrical, Electronic and Computer Engineering 

University of Natal, 4041, Durban South Africa 
email: boje@nu.ac.za 

 
Abstract 
This paper examines the feedback design possibilities for uncertain plants where the 
underlying parameterisation is described by a probabilistic rather than a deterministic set 
membership. The design perspective is Horowitz’ quantitative feedback theory. 

 
 
1. Introduction 
Horowitz’ quantitative feedback theory (QFT) is a well-
established engineering design philosophy for uncertain 
feedback problems (see Horowitz, 1991 and references 
therein). In its usual form, the plant is a member of an 
uncertain set and at each design frequency, ωi, this set 
results in a template on the arithmetic, or more usually, 
the log-polar complex plane (Nichols chart). In some 
practical applications the plant knowledge is 
probabilistic and in this case the QFT templates do not 
have crisp edges. It may appear that the notion of a 
quantitative, yet probabilistic design approach that will 
be explored in this paper is a contradiction in terms but 
design with hard boundaries can emerge from the soft-
edged template. The method developed in the paper is 
based on application of simple approximations for the 
mean and variance behaviour of functions of a random 
variable, for example, from Papoulis (1965). 
 
In system identification based on measured data, a 
probabilistic description of the plant may be given, in 
the form of either a non-parametric frequency response 
with variances, or a parametric transfer function with 
mean and variances given for the parameters. More 
complicated linear system models may emerge from 
first principles modelling and possibly linearisation, 
where the underlying parameterisation of the system is 
uncertain and is described by means and variance. In 
many of these problems, there is no practical prospect of 
knowing the density of the underlying random variables 
and even if they were known, attempting to calculate the 
resulting density of the closed loop transfer function (as 
a function of the unknown controller and the mapping 
from the parameters to the plant and from the plant to 
the closed loop transfer function of interest) would be 
unreasonable. What is proposed here is to calculate the 
approximate propagation of the known plant mean and 
variance to the closed loop transfer function of interest. 
The designer may then have a more accurate view of the 
relationship between the mean open loop and closed 
loop system and an estimate of the variance. This would 
allow the designer to assign a number of standard 
deviations of tolerance to the design, depending on the 
robustness required.   
 
The use of multiple plant cases (for example at different 
operating conditions) is not excluded by the approach 

introduced in the paper. The method is per plant element 
and different (individual) elements of the plant set may 
have different levels of probabilistic uncertainty. 
 
We will discuss only sensitivity design for single-input, 
single-output (SISO) plants in detail but the ideas 
presented here can be expanded to situations that are 
more general. 
 
2 Preliminary results 
2.1 Problem statement 
We will consider a linear SISO plant, P(s,α), where s is 
the usual frequency variable and α is a vector of 
underlying, uncertain plant parameters. In usual QFT, 
the design task is to achieve client-specified tracking 
and regulating behaviour for all α∈{α}, a set of known 
elements. For practical calculations, {α} is finite or can 
be adequately approximated by a finite set. In this work, 
we will investigate the situation where either α is 
uncertain or where P(s,α) is uncertain directly. We then 
require that approximate, client-specified mean, or mean 
plus standard deviation tolerance, closed loop behaviour 
be obtained.  
 
2.2 Background approximations from probability 
theory 
Developing the scalar results of Papoulis (1965, Section 
5.4), the following approximations are available for the 
mean and variance of, y = h(x), a function of a random 
vector, x ∈ ℜn×1, with density, f(x). The great benefit of 
the approximations that follow is that they are 
independent of the density. 
 
Mean 
Approximate y using the first three terms of the Taylor 
series expansion around x

, the mean of x. This is reasonable if h(x) is smooth as the density f(x) takes 
significant values near the mean. 
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Using eq(1), the mean of y can be approximated by, 
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where o denotes the point-wise (Schur or Hadamard) 
product of the matrices, [•]ij refers to the individual 
matrix elements, and Cx = cov(x) is the covariance of x. 
Notice that when calculating the expectation from eq(1) 
to eq(2), the linear term with ( )xx −  vanishes and the 
quadratic term is calculated by observing that the result 
is a scalar, allowing the order of calculations to be 
swapped to isolate terms which give cov(x).  
 
Variance 
The variance of y is approximated using a similar 
approach, 
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2.3 Sensitivity design for SISO systems using mean 
and variance information from the plant elements 
 
Typical SISO design using QFT examines performance 
specifications that can be written as linear fractional 
mappings of the design parameter, G, typically the 
feedback controller, at design frequency, ωi 

γ≤
+
+

dGc
bGa  (4) pφ∂

Each of a, b, c, and d is a known complex number, e.g., 
, and the specification, γ, is a given positive 

number. At a fixed controller angle, φ

aj
aera φ=

g, the magnitude rg 
is calculated as, 
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Clearly, this is a quadratic inequality in rg for which a 
closed form solution can be found at equality and some 
logic applied to discover if the acceptable solution lies 
above or below the corresponding gains required for 
equality 
 
A special case is sensitivity design where a = c = 1, 
b = 0, and d = P = P(jωi), the plant transfer function at 
the design frequency, ωi, giving, 

γ≤
+ PG1

1  (6) 

and, 

( )( ) 222 /1cos21 γ≥+φ+φ+ gpgpgp rrrr  (7) 

 
From eq(2) it is clear that if a sensitivity design is 
attempted based on a “mean” plant alone, the “mean” 
sensitivity will not be correct (i.e. will be biased) 
because of the neglected second and higher order terms 
in eq(2). 
 
Using eq(2) and eq(3), the expected value and variance 
of |1+GP|2 required for specifications from eq(6) can be 
estimated. The reason for choosing |1+GP|2 rather than 
the sensitivity directly is the complications that arise in 
the calculation of the square-root and inverse. (Although 
only useful a posteriori, for xy 1= , 
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calculation of |1+GP|2 gives a quadratic inequality in the 
controller magnitude, rg, that is easy to solve for bounds 
and will be familiar to QFT practitioners. For this, 
define ( )Tppr φ=x

)cov(xx

and assume that the co-variance 
of the uncertainty in magnitude and phase of the plant is 
given as C = . Finally, 
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The partial derivatives required are given by, 
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The expected value of |1+GP|2 is then approximately, 
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with, 
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The variance of |1+GP|2 is approximated by, 
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As mentioned above, eq(10) is quadratic in rg so the 
usual approach in QFT computer aided design using 
quadratic inequalities can be followed. For more general 
specification equations this is unlikely to be the case as 
one would typically have to apply the approximations 
eq(2) and eq(3) more than once (firstly to calculate the 
magnitude squared and then inverse, ratios and square-
root), resulting in an explosion in complexity and 
tedium.  
 
3. Example 
 
Suppose that system identification has resulted in a 
plant description, 
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Further, suppose it is required to achieve |1/(1+L)| ≤ 
-6dB at ω = 1 rad/s. A first application of the results of 
eqs (2) and (3) to the plant alone gives the following 
mean and covariance for the magnitude, rp, and phase 
angle, φp,: 
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Using values from eq(15) to eq(17) in eq(10), with 

nominal plant, 
1

2 1.0−e s

o , results in the nominal 

bound shown in Figure 1. Instead of including the 
variance result, eq(12) and obtaining a non-linear 
equation in rg, an estimate of is obtained using 

the r

2
)1( 2L+

σ

g, already obtained and the specification (on (1+L)2) 
is modified by 1σ and a new rg is calculated using 
eq(10) to illustrate the effect. Because the variance is 
small, this procedure (calculate bounds on L for 
(1+L)2+1σ , use these to estimate σ and re-calculate …) 
can be iterated successfully to a fixed point. 
 
 
4 Conclusions 
This paper has introduced an approach for treating 
individual plant elements that are themselves uncertain 
in the QFT framework. The approach uses 
approximations for the mean and covariance of a 
function of a random variable of with arbitrary density.  
 
The approach has been illustrated on a simple sensitivity 
specification for a SISO plant with a single plant 
element. 
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Figure 1 – Inverse Nichols chart showing the effect of including second order knowledge on a –6dB sensitivity 
specification. Solid line – nominal bounds using second order knowledge; dashed line – nominal bound using 
second order knowledge and one standard deviation; dotted line – nominal bound using only mean parameters 
(i.e. nominal = plant) 
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