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Abstract.  In the last years a lot of papers appearing in the control literature introduced elaborated control 
design algorithms. Most of them contain mathematical approaches that apparently solve control problems. 
However in many cases the engineering perspective is lost. Some case-dependent conclusions are proposed 
to be of general use and some properties are considered as universal, even they can fail under some specific 
situations. In this paper, a critical perspective based on some illustrative results suggests the need of a final 
review of any control solution according to the control engineering good practice. Delays in the feedback 
control loop are not always bad, multirate control not always leads to rippled behaviour and feedback of the 
actual process output is generally better than inferential control.  

 Key-Words: - Discrete-time systems, multirate systems, sampled-data systems, time delay, inferential 
control. 

1 Introduction 
 
Control engineers must deal with control problems 
and find solutions in practical applications. That 
means, they should be able to formulate a control 
problem, to apply a design methodology, to 
implement a control strategy and to fine-tune the 
control system to adapt to changing operating 
conditions. It is for these reasons that control 
engineers must be always able to understand the 
behaviour of the controlled plant, to interpret the 
effects of changing parameters and to develop a 
number of options to solve an emergency situation. 
 
Other than knowing the theory behind all these 
activities, they must have engineering common 
sense, that is, to have the skill to react in the correct 
way to an unexpected condition in the controlled 
system. In the old days, a good control engineer 
should be capable of understand the time and 
frequency response of the single-loop continuous 
time controlled plant. 
 
Nowadays, the use of powerful control design 
theories and tools leads to control solutions that 
appear as "magic" solutions, but there is a general 
lack of knowledge about how to react if minor 
changes in the process, operating conditions or 
implementation constraints appear. The obtained 
control structures, their parameters and their 
operational properties are derived through 

mathematical procedures where the physical 
meaning of the actions is hidden and it is difficult to 
interpret and change unexpected behaviours. 
 
Two different sources of trouble are going to be 
considered in this contribution. First, there is the 
tendency generalise, that is, to admit as a general 
property what happens in some specific 
circumstances. But, what is correct in some 
applications is inapplicable in others leading to rules 
of thumb that could result in wrong actions. On the 
other hand, some not well posed problems may lead 
to erroneous conclusions which can be easily proved 
to be false. There are many of these circumstances 
in control engineering practice. 
 
We are going to consider three different general 
situations. They are related to the influence in the 
controlled system behaviour of time delays in the 
control loop, the use of model based inferential 
control, and the ripple effect in multirate control 
systems. These characteristics are frequent in 
modern control systems where the use of computer-
based control structures allows for complex control 
schemes but also results in unavoidable time delays. 
 
To motivate our discussion, a number of  
contributions available in the control literature will 
be analysed and some alternatives will be  
presented. Finally, some general remarks and 
conclusions are outlined. 



In the abstract of the paper by Moore and coauthors,  
[1], it is said that “Multirate sampling techniques … 
lead to a degradation in the intersample behavior of 
the system”. This drawback has been always around 
the nature of multirate systems and it can be easily 
considered as unavoidable. In order to derive this 
conclusion, the lifting technique [2] to modelling 
multirate signals and systems is used. As it is well 
known, in using this technique, the input and output 
signals are grouped in block vectors, and the system 
is modelled by a linear time invariant state space 
representation with enlarged input and output vector 
dimension. The elements of the block signal vectors 
are the values the corresponding signal have at 
different instants of time, those of the 
sampling/updating of the respective variables. Each 
block is composed by the corresponding signals 
taken at the metaperiod, that is, a global period 
which is the minimum common multiple of all the 
sampling periods in the system. We will show that 
this conclusion is wrong, the trouble, in this case, 
being a miss interpretation of the meaning of these 
block vectors. Their elements are not independent 
variables but samples of a few variables taken at 
different instants of time. 
 
The common use of computer-based control systems 
allows to easily implement model-based control 
algorithms and virtual sensors providing that 
estimated measurements are included in the control 
loop. In the paper [3], a dual-rate inferential control 
is analysed and compared with a fast single-rate 
control and the following result is extracted from the 
abstract: “Comparing such an inferential controller 
with the corresponding fast single-rate controller … 
the former is advantageous in stability robustness of 
the closed-loop system”. This may lead to the 
conclusion that: “if an uncertain system is controlled 
by using estimated values of the output variable it is 
more robust than implementing the control using 
actual output measurements”. This clearly is 
unacceptable as a general rule, although, as we will 
show later on, it can be true under some very 
specific operating conditions.  
 
A general rule of thumb in applying a designed 
closed loop control system is that an increment on 
the loop gain reduces the stability of the system. The 
same applies with the phase lag. Additional time 
constants or time delays in the loop deteriorate the 
stability margin of the controlled system. If they are 
not considered at the control system design stage, 
their main effect is a reduction in the controlled 
system performances: lower damping, higher 
settling time, reduction of the phase margin and, in 

the worst case, instability. In particular, there are 
limitations in the time delay to guarantee the 
stability of a controlled system. If the delay is 
included in the plant model, the controller design is 
more complicated. Since the seminal work of Smith 
[4], a lot of research to overcome the negative effect 
of the delay has been reported (see, for instance, 
[5]). Thus, it is quite common to generalize and use 
the concept that delays are always bad for the 
system dynamic behaviour. 
 
But it is well known that there exist systems denoted 
as conditionally stable, where the stability is only 
achieved in a range of loop gains. In these cases, a 
stable system may become unstable if the gain is 
reduced and vice versa. A similar situation can be 
foreseen related to the time lag. The presence of 
delays may have positive effects, either in the 
design or in the implementation of the control. 
Recently, it has been reported, [6], that control 
action delivering delays in digital control systems 
may have a positive effect on the closed loop 
stability. And this is in contradiction to the assumed 
concept that time delays in the loop are always bad. 
 
Let us analyse in some detail each one of these 
common and interesting situations.  
 
 

2 Intersample Behaviour in 
Multirate Control 
 
Let us consider a multirate control system composed 
by a continuous process and a digital controller 
connected by means of a set of samplers and hold 
devices acting at different frequencies. Moreover, 
each input/output variable may be treated at 
different sampling rate. One of the most common 
schemes in this environment is the so called MRIC 
(multirate input control). In this case a slow 
sampling of the plant output is taken (due to 
physical or economical restrictions), at period T1, 
and a fast updating is used  at period T2 (<T1). This 
kind of situations leads in a natural way to a dual 
rate control loop where the global sampling is 
repeated periodically each minimum common 
multiple of every sampling period in the digital 
loop. In the MRIC basic case, with T2=T1/N, N 
being a natural number, this metaperiod is T=T1. 
Actually the global model is T-referred. See [7] for 
instance. 
 
Basically, there are two approaches to deal with this 
kind of systems. The first and more generally used 



is the state space approach. This is called the lifting 
modelling method. In this case the different signals 
(input, output, and some times also the states) are 
lifted taking into account their values at instants 
relatives to one metaperiod and enlarged vector 
variables are obtained. For instance, the discrete 
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 But the components of these vectors are connected 
in time. Thus, they are not independent. There are 
different options in building up the vectors 
depending if the sampled signal is considered in its 
own sampling period over one metaperiod [8,9] or a 
decomposition by the maximum common divisor 
sampling period is assumed [10]. A specific algebra 
is proposed to treat these systems, and interesting 
properties can be inferred. 
 
A second approach is the input/output modelling. 
Actually an internal representation is developed and 
afterwards a decomposition in transfer functions 
attached to certain subsystems is proposed. Another 
possibility is the decomposition of the global model 
assuming every relation (transfer function) between 
the different inputs and outputs over a global period. 
For instance, in a SISO MRIC environment, the 
slow output of the plant P is computed as the sum of 
the products of different fast inputs by their relative 
subsystems. Following [1], for N=2, the output is: 
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where the variable z2 denotes the slow sampling rate 
of the variables (z-2 is the T delay operator). The 
proposed control structure is depicted in fig. 1. 
 
 
 
 
 
 
 
 
 
 
Figure 1. MRIC Control structure (N=2). 

 In this case it is assumed that each input vector 
component ( )z(Ui ) is an independent variable, but 

it is evident that, physically, they are not different 
inputs. Following [1], the fast control input is 
computed through its components: 
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and the controllers are calculated to assign the poles 
and zeros of the global transfer function. 
 
In both cases the terms of a sequence corresponding 
to the same signal at different time instants on one 
metaperiod are assumed like if coming from 
different signals. So the relation among them is not 
taken into account. The mechanism –following with 
the MRIC example-  is like if we were controlling 
the global system by N different controllers each of 
them designed for a subsystem. Every controller 
updating is just used once per metaperiod and the 
new one due to this controller is assumed 
periodically in the next metaperiod. N independent 
actions are being chained that led to N switches that 
obviously produces the continuous output ripple. A  
conceptual mistake is being done by missing the 
interdependence among these variables. 
 
An alternative approach, denoted as dual-rate 
controller,  has been proposed by the authors in a 
previous work, [11]. This is based on a global 
modelling and consequent design without 
considering different subsystems. However the 
hidden oscillations problems could be present in 
some given cases, but due to other well known 
causes, [12].  
 
The outline of the approach is as follows. If M(s) 
represents the desired closed-loop performance for 

the controlled plant, and )()( NT zMzM = , 

)()(/ zMzM NT =  are their discrete time 
equivalents for T and T/N periods, this non-
conventional controller is composed by three 

elements. A slow part, 
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Then, the slow signal is transformed (by replication) 
into a fast rate signal by means of a hold device 
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involving a fast rate plant model, )(zGp . Figure 2 

reproduces the proposed scheme. 
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Figure 2. Dual-rate control strategy. 
 
The design does not require any further refinement. 

2.1. Illustrative Example  

Let us reproduce the example in [1], (section 7). The 
continuous plant P is a typical DC-motor with 
transfer function: 
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the output sampling period being T = 0.05 sec. and 
N =2. The MRIC model (2) is: 
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The desired behaviour, assuming a wn=20 rad/sec. 
and a damping coefficient of 0.707, is expressed by 
the closed-loop transfer function: 
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or, in discrete time: 
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Firstly reproducing the method exposed at [1], in 
order to be able to achieve full pole and zero 
assignment, this reference model is slightly modify 
to: 
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The procedure to achieve numerator and 

denominator matching in )( 2zM  assumes the 
classical rules in selecting the polynomials in the 

controllers )( 2
ij zC  in (3). In this example, it 

results:  
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As it is shown in that paper the continuous plant 
output is highly oscillatory (see figure 2 where we 
reproduce the simulation at [1]). This is normal 
because there are, as it has been told, two different 
control actions independent between them.  
 

 
Figure 3. Ripple in the step response. 

 
In the same figure the plant output response with the 
dual rate controller assuming the same environment 
(MRIC with N=2) has been added. In this case the 
results are: 
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assuming again T=0.05 and N=2. 

2.2. Comments 

As it is clear if the design takes into account the 
global input sequence a proper result without ripple 
can be obtained. The initial requirements are 
fulfilled without ripple using the dual rate controller. 
Perhaps the additional constraint of pole-zero 
assignment is leading to the bad result presented in 
[1]. 
 
 
 
 



3 Inferential control 
 
Model-based control is a popular and powerful 
control design technique. In one way or another, the 
controller includes the model of the plant. Virtual 
sensors [13] are also becoming common “devices” 
to get inaccessible variables. But, in many cases, the 
information process takes places in open loop, there 
is no feedback, and modelling errors or process 
disturbances cannot be counteracted.   
 
This is the case when the output of the process is 
measured at low rate (as in the previous case) and 
the control action is able to be updated more 
frequently. The MRIC control is one option but 
another alternative is to predict or estimate the not 
available output, based on the process model, and 
implement an inferential control. This schema is 
depicted in figure 4.  
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Figure 4. A schema of  inferential control. 
 
The upper part of the figure represents the actual 
process Gpr(z) and its control, GR(z), being designed 
by any suitable direct or indirect method. λ is an 
availability parameter: λ = 1 if the output is 
measured and λ = 0 if it is not. R and d denote the 
external inputs corresponding to reference and 
output disturbance, respectively. In order to 
implement a faster controller, the missing output is 
computed based on the plant model, Gp(z), although 
the external disturbance is not taken into account, 
and any modelling uncertainty will affect the value 
of the estimated output. The output/reference 
transfer function, from figure 4, is: 
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The situation is equivalent to the MRIC if the 
availability parameter λ is one every N periods and 
zero in between. Thus, for the sake of comparison 
with the multirate schemes, the sampling period is 
assumed to be T and the control updating period 
T/N.  

 
The main goal is to try to reproduce the behaviour 
of a fast sampled control system, as depicted in 

figure 5, where the output is available at the same 
rate than the input is updated.  
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Figure 5. Fast single-rate control. 
 
It is evident that this schema is more comprehensive 
from the control point of view than the inferential 
control. Moreover, increasing the value of N, in the 
limit, an open-loop model based control will be 
obtained, and model uncertainties or, in the worst 
case, plant instability could not be counteracted. The 
comparison may be established at different point: 
 

- Noise rejection. The inferential is feeding back 
less noise. 

- Disturbance rejection. The inferential has less 
information about the non measurable 
disturbances. 

- Robustness. The model uncertainty is not 
available in the model.   

- Acquisition system. The fast control requires 
the frequent output accessibility. 

 
Also based on the process model, the dual rate 
controller previously introduced [11], is an 
alternative to the inferential control. In this 
approach, as already said, instead of an explicit 
model of the plant the controller is split into two 
parts working at different sampling rates, both 
involving the discretized model of the plant also at 
different sampling rates.  
 
Of course, one of the problems we have observed 
using this approach is the sensitivity of the 
controlled plant behaviour to model mismatching, 
also obvious with an inferential control. However if 
we suppose that both the actual plant and the 
uncertainty are known, it is possible to deduce an 
interesting set of conclusions.  

3.1. Design example 

As an example, consider the process: 
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An acceptable continuous time PID controller is 
given by 
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An output sampling period T = 0.2 sec and a fast 
control updating of T/N= 0.1 have been selected for 
the dual rate strategies, whereas a unique fast 
sampling rate of T/N= 0.1 is used for the single rate 
fast control. Usually it is considered that Gp=Gpr 
and some erroneous conclusions about another 
magnitude relations, like control w.r.t. disturbance, 
u/d, are reached.  
 
Let us assume a multiplicative uncertainty, the 
actual process transfer function being: 
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Some experimental results could be easily obtained 
by means of a sampled-data frequency response 
analysis tool proposed by the authors. The 
magnitude Bode diagrams are shown in fig. 6 

 
In this figure, the following notation, about the 
legend of the different curves, is assumed: 

a) discrete fast control loop (as in fig. 5) applied 
to the fast plant model 

b) discrete fast control loop applied to the real 
process. 

 
In both cases, a and b, the controller has been 
designed for the plant model. 
 

c) dual rate inferential control (as in fig. 4) with 
ideal conditions. That is, Gpr(z) is identical to 
the process model (of course is the same curve 
than a) 

d) dual rate inferential control applied to the real 
process. 

 
For c and d cases, the controller is the same that the 
one used for a and b. 
 

e)  dual-rate with non conventional controller (as 
in fig. 2) with ideal conditions. 

f)   dual-rate with non conventional controller 
including the actual plant transfer function 
which has not been used to design the dual 
rate controller. 

 
It is clear that if the real process is assumed, the 
frequency responses must be studied deeply. If only 
the process model is considered, that is, under ideal 
conditions, the conclusion is clear: taking into 
account that the a and c curves are the same, the 
inference control is preferable. However if the 
model mismatch happens at the low frequency 
range, as assumed in this case, the curves of 
magnitude b and d lead to the opposite conclusion.  
 
Moreover, if the non-conventional dual rate control 
structure is used, the performance degrading is 
attenuated, as it is clearly seen comparing the 
responses b, d and f. 
 

 Figure 6. u/d Bode magnitude plot. 
 
The frequency and time closed loop performances 
(output versus reference) for these cases are shown 
in figures 7 and 8, respectively. 
 

 
Figure 7. y/ref Bode magnitude plot, in similar 
conditions as in fig.6 (see the text).  
 
In [3], it is claimed that the control structure in fig. 
4, the inferential control, is better than the fast 
control in fig. 5. In particular, in the conclusion 



section is said: “… the dual-rate inferential control 
scheme is advantageous in stability robustness over 
the fast single-rate control scheme.” 
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Figure 8. Step responses 
 
This conclusion is “proved” using a very special 
system  and it cannot  be generalised. The design is 
based on a free delay model such as: 
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while the real process transfer function is: 
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Thus, the multiplicative uncertainty is: 
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which is dominated by a three time delay units. It is 
well known that delays in the loop usually degrade 
the control performance (see the next section). So, if 
the control is based on the signal without delay, that 
of the model, the response should be better.  

3.2. Comments 

 
The first conclusion is that feedback is always an 
advantage in practical control, due to system 
uncertainties and disturbances. 
 
Second and most important one is that properties 
shown by very particular designs cannot be 
extrapolated and considered as general design rules. 
 
 
 
 

4 Additional Time Lag in the 
Loop 
In an industrial controlled system it is possible to 
have some sources of unavoidable delays, either in 
the plant or in the actuators, mainly due to 
transportation lags, the existence of commutation 
devices or neglected dynamics. In general, these 
additional delays are considered in a negative way 
because they degrade the controlled system 
behaviour and efforts are taken to cancel or diminish 
their effect. But this is not always the case. It is well 
known that the feedback of the measurement noise 
can excite the system in a non-desired way, 
amplifying the noise and disturbing more the plant. 
If a delay is introduced, the noise and its effect on 
the plant can be decoupled and better behavior could 
be achieved. In [14], the idea of using an additional 
delay for decoupling the dominant dynamics of a 
plant and the possible internal resonance or drifting, 
has been reported. In multivariable systems, it has 
been also studied by Morari and co-workers, [15], 
the positive effect of additional delays in decoupling 
the decentralized control loops.  

Let us first clarify the concept on phase-
conditionally stable systems, similar to the concept 
of gain-conditionally stable systems [16]. This 
characteristic implies that the system is stable for a 
given range of phase lag in the loop transfer 
function. This situation can be find in resonant 
systems, where the resonant frequency is out of the 
required bandwidth of the controlled system. In the 
figure 9, the polar plot of a gain conditional 
(continuous line, Gain-C) and a phase conditional 
(dotted line, phase-C) stable system are sketched.  
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Figure 9: Polar plot of gain (Gain-C) and phase 

(Phase-C) conditionally stable systems 
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A continuous time system, G(s), in order to present 
the phase-conditional stability property should be: 

- the frequency response gain at the resonant 
frequency greater than one 

- the frequency response gain lower than one 
for a range of lower frequencies.  

In this case, the introduction of either dead time or 
additional lags may stabilize an unstable system.  

For instance, referring to the same figure 9, the 
system Phase-C is unstable but, if a dead time is 
added in the loop, the system can be stabilized. A 
greater dead time will turn it again unstable. This 
system is stable for  
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where Φ1 and Φ2 are the loop frequency response 
phases at frequencies w1 and w2, respectively of the 
initial system, the gain being unitary.   

4.1. Example 

Let us consider the closed loop control of the system 
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This system exhibits a resonance peak around the 

[ ]sradnp /11 2 ≈−= ξωω . If a unitary negative 

feedback is applied, the full output is fed back and 
the system reaction tries to counteract the overshoot, 
leading to an unstable closed-loop response. 

The Bode diagram for unity feedback is shown in 
fig. 10.  
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Figure 10: Bode diagram. Process with dead time 

(lower phase graph).  

The magnitude curve crosses the 0 dB line three 
times, at frequencies {0.2, 0.85, 1.15}. At the point 
where the phase reaches -π  rad (upper line), the 
magnitude is greater than one. Thus, the system is 
unstable. It is clear that if the gain is reduced the 
system becomes stable but very slow. Starting from 
a stabilizing low gain, if the gain is increased to get 
a faster response the cut-off frequency jumps almost 
to the resonant frequency and the system becomes 
unstable.  

If the gain is further increased , the system becomes 
phase-conditionally stable, as shown in figure 10. 

If a dead time in the feedback path is assumed, it 
does not change the magnitude plot and introduces 
an additional lag, as shown in fig.10 (lower curve in 
the phase graph) for Td=3 s.  

In this way, the cut-off frequency is enlarged to 
ω=0.24 rad/s keeping stable the system with a phase 
margin of 65º. The closed-loop step response is 
plotted in figure 11. 
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Figure 11: Step response with Td=3 sec. 

4.2. Comments 

In this case, the general rule about the degrading 
effect in the controlled system response due to 
delays in the loop is true, but, in some specific 
conditions, as those considered in the above 
example, the delay may improve the stability. 

 

5 Conclusions 
 
The use of powerful control design software 
packages as well as the development of intricate 
design procedures lead to “magic” solutions. And 
the assumptions originally taken to prove the 



properties of these designs could fail in a new 
application.  
 
In this contribution, three rather common situations 
have been analysed. First, the multirate control. 
There are a bunch of design techniques applicable to 
these systems. Ripple in the intersampling time 
response is not an inherent characteristic to this 
control strategy. A controller design to meet some 
requirements has been developed following two 
different approaches. The so-called dual-rate 
controller allows a fast and smooth response. Thus, 
the ripple, if it appears, could be due to the used 
control design approach. 
 
Second, the properties of the so-called inferential 
control should be properly treated. The suitability of 
this control strategy strongly depends on the control 
problem conditions: measurement noise, kind of 
uncertainty, disturbances, … 
 
Finally, when teaching basic concepts to control 
students, the effect of time delays in the loop should 
be also analysed. In very specific conditions, 
additional delays in the loop may improve the 
controlled plant performances.  

 
Thus, based on the review of some concepts and 
design methodologies, the need of a final overview 
of any control solution according to the control 
engineering good practice has been suggested. 
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