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Abstract: Model Predictive Control is used to design a feedback control system for a 
GSM telecommunication market modelled using system dynamics with three incumbent 
operators.  The controller calculates the optimal tariffs for the products of one of the 
operators to be used as decision support by the marketing management of the operator 
when setting prices.  The controller is able to optimise the Average Revenue Per User for 
the operator in the closed-loop non-linear simulation, as well as increase total revenue 
substantially. 
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1. INTRODUCTION 

 
A GSM telecommunications market consisting of 
two incumbents and an entering third player is 
modelled utilising a multivariable non-linear, state 
space, system dynamics approach (Forrester, 1995; 
Lommerud et al., 2002).  Past researchers in this area 
have mostly used an econometric approach (Fildes et 
al., 2002) which does not capture dynamic or real-
time information (Markidakis et al., 1983) and which 
does not lend itself to dynamic optimisation (Cox et 
al., 2002, McBurney et al., 2002). 
 
The aim of this paper is to contribute to the scarcely 
researched area of dynamic real-time optimisation of 
marketing strategy (pricing) of telecommunication 
services.  In the field of dynamic optimisation, work 
has been published focussing on market models that 
use historical data, and also models of organisations 
in the start-up phase (Parker, 1997).  Little has been 
published in the field of telecommunications related 
to real-time optimisation and decision support 
systems (Jonason et al., 2002; Singh, 1990) for stable 
industries, especially in the South African context as 
addressed in this paper. 
 
The forecasting model calculates subscriber choice 
from a calculated utility based on the multinomial 
logit (Ben-Akiva et al., 1985) and conjoint analysis 

(Attenborough, 1998; Wittink et al., 2001).  The 
utility, which determines demand, is based on the 
fact that subscribers strive to maximise their 
satisfaction (Jun et al., 2002) and minimize their 
expense (Kang et al., 1996).  The utility is used to 
obtain a probability that is fed into a Bass diffusion 
type (Bass, 1969) aggregate growth (Meade et al., 
1995; Parker, 1994; Venkatesan et al., 2002) 
differential equation.  This equation relates the 
different states in the model to their time derivatives, 
and also incorporates the industry trend that 
subscribers tend to be loyal to operators (Lommerud 
et al., 2002).  The probability depends on the price, 
the amount of new subscribers joining the industry, 
the cost of connecting to an operator, network 
quality, marketing effort, connection incentive and 
monthly subscription fee (Williamson et al., 1997).  
The actual network usage for the particular service 
option chosen, which is modelled as a function of 
price (Fildes et al., 2002), determines the Average 
Revenue Per User (ARPU), and hence the revenue 
that the operator will be earning. 
 
The model encapsulates all the prominent post-paid 
price plans on the market, as well as five different 
demographic market segments (Fildes et al., 2002).  
This approach enables a sharper focus on the 
determinants of price elasticity (Parker, 1997).  



     

Relevant industry data, which are often difficult to 
obtain (Fildes et al., 2002; Islam et al., 2002), was 
supplied by Icon Corporation (Pty) Ltd, and used to 
validate the model. 
 
A Model Predictive Controller (Goodwin et al., 
2001; Seborg et al., 1989) is designed for the 
telecommunication operator market model.  It uses 
the observed market state to optimally determine a 
price time-series for one of the operators’ products 
(this operator will be referred to as the optimising 
operator) that will maximise ARPU over the 
simulation time interval.  Except for ARPU, the 
controller is also able to increase total revenue by 
3.6% and minimise churn (the movement of 
customers from one operator to another) over the 
simulated interval for the optimising operator.  It 
therefore provides valuable decision support to the 
marketing management of such an operator (Braun et 
al., 2002; Bui et al., 1996; Singh, 1990). 
 
 

2. MARKET MODEL DEVELOPMENT 
 
This paper focuses on the control part of the research 
done, hence the model will be discussed very briefly.  
The basic structure of the model is that of a state 
space model, with the generic non-linear 
representation 
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and the generic linear representation 
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Where x ∈  Rn, u ∈  Rm, y ∈  Rp, A ∈  Rn x n, B ∈  Rp x 

n, C ∈  Rp x m, D ∈  Rp x m   and k is the discrete time 
variable representing months.  In (2) the definition of 
the dimension n is the number of states, m is the 
number of inputs and p is the number of outputs. 
 
In essence the model simulates the movement of 
subscribers between the different products on offer in 
the market based on the choice of the subscriber. 
 
The model includes 16 price plans between the 3 
operators in the market.  Each price plans has 6 
tariffs linked to it: Three possible destinations that 
can be called during two different times of day.  
Therefore tariff inputs into the model constitute 96 
different inputs. 
 
The market is divided into 5 market segments 
according to income: Consumer Low, Consumer 
High, Medium, Business Low and Business High.  
For each market segment an input representing the 
amount of new subscribers joining the total market 
per time period is modelled – d1[k]. 
 

In addition the following input variables are 
modelled per price plan offered: 
 
1. d2[k] - the cost of connecting to a price plan for 

the first time. 
2. d3[k] – soft issues not covered in the other inputs, 

i.e. the subscriber’s value for money parameter. 
3. d4[k] - the connection incentive when connecting 

to a new contract. 
4. d5[k] - the monthly subscription fee. 
 
In response to the inputs (adding the amount of input 
variables defined above gives m = 161), subscribers 
choose the product that fits their market segment the 
best and minimises their expense.  The movement of 
subscribers between price plans and operators is 
tracked by means of 80 states in the model.  In 
addition the model has another 30 states used for 
output calculation – i.e. n = 110. 
 
The model has p = 30 outputs, which are the 
following 6 vectors having 5 elements each (one for 
each market segment): 
 
1. The amount of subscribers that have joined the 

whole market during the month. 
2. The net gross connections for the optimising 

operator. 
3. The ARPU for the optimising operator. 
4. The revenue from usage for the optimising 

operator. 
5. The average amount of minutes phoned by all 

subscribers of the optimising operator. 
6. The total amount of minutes phoned by all 

subscribers of the optimising operator. 
 
 

3. OPEN-LOOP SIMULATION 
 
The non-linear model in (1) was simulated and fed 
with relevant industry data over a period of 9 months.  
It tracks the actual data with sufficient accuracy for 
the purposes of the project. 
 
3.1 Results 
 
The optimising operator is referred to as OO, and the 
other two operators as O2 and O3.  In this section 
some of the results of the open-loop simulation are 
shown and discussed. 
 
From Fig. 1 it is clear that the majority of the 
subscribers belonging to the optimising operator (and 
to the market in general) resorts in the lower end of 
the market segment spectrum. 
 
A tariff increase was affected by all operators in the 
model at the start of the 4th month of the simulation 
period.  The positive impact of this tariff increase is 
clearly discernable in the total revenue per market 
segment in Fig 2. 
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Fig. 1. Subscribers per Market Segment for OO. 
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Fig. 2. Total Revenue per Market Segment for OO. 
 
 

4. CONTROLLER DESIGN 
 
4.1 Model Linearisation 
 
The model (1) was linearised by making use of 
standard linear control theory (Nise, 1995) and an 
average operating point.  Of the 161 inputs, only the 
tariffs of 5 of the optimising operator’s price plans 
were chosen to be manipulated variables in the 
controller.  The rest are measured disturbances.  Thus 
5 x 6 = 30 inputs make the MIMO problem square (p 
= 30). 
 
4.2 Model Analysis 
 
The linear model has the majority of its poles in the 
Left Half Plane (LHP), but there are five poles at 
zero and five at 1 in the Right Half Plane (RHP).  
The linear model is thus open-loop unstable. 
 
Controllability and observability analysis gave the 
following results: The rank of the controllability 
matrix is 49 and the rank of observability matrix: 51. 
The linear model is therefore neither controllable nor 
observable.  A remarkable property of MPC, 
however, is that stability of the resultant feedback 
system can be established (Goodwin et al., 2001).  
Furthermore, the plant is simulated as non-linear. 

 
From the frequency response of the linear model it is 
apparent that the cut-off frequency and bandwidth of 
the system is 100 = 1 rad/month.  This was the case 
for all the responses – the maximum bandwidth in 
the model is 1 rad/month. 
 
4.3 Controller Design 
 
In order to reach the objective of the research the 
following feedback control methodology, utilising 
Model Predictive Control (MPC) (Goodwin et al., 
2001; Seborg et al., 1989; Van Den Boom, 1996) has 
been implemented: 
 

QPMPC
Plant: Industry
Market Model
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uopt[k]

uopt[k]

y[k]

xest[k]

Set Point
AdjustmentSet Point

Disturbances

y[k]

 
Fig. 3. The Implemented MPC Controller (Morari at 

al., 1998) 
 
The observer is linear and estimates the current states 
from the model outputs and inputs.  The constraints 
of the market are the maximum and minimum values 
of the tariffs that may be charged per minute. 
 
It was found that if the controller focuses on all the 
outputs of the model with the same priority, that a 
meaningful solution to the problem, resulting from 
bounded changes in the manipulated variables 
(tariffs) could not be obtained.  A higher priority 
therefore had to be assigned to some outputs.  It was 
decided to focus the attention of the controller on the 
ARPU set of outputs of the model. 
 
The set point of the ARPU outputs were made a 
certain percentage higher than the value of the 
respective ARPU outputs per month obtained from 
the open-loop non-linear simulation of the model.  
All the other outputs were given set points equal to 
the values of those outputs per month obtained from 
the open-loop simulation.  If any output is lower than 
the desired set point for the month, the set point is 
kept constant and the controller would attempt to get 
the output to be closer to the set point (if not equal to 
it) for the next month by applying optimal tariff 
inputs.  If an output is higher than the desired set 
point for a month, however, the controller sets this 
set point equal to the output for that month so as to 
zero the error signal for that output, to enable the 
controller to focus on outputs that were lower than 
set point (see the set point adjustment block in Fig. 3 
and how it links to the other blocks in the design). 
 
The amount of control moves that the controller 
plans into the future during each iteration (control 
horizon), and the amount of time intervals that the 



     

system output is predicted into the future in response 
to the control moves (prediction horizon) (Seborg et 
al., 1989; Van Den Boom, 1996), were empirically 
determined.  The optimal and implemented values 
are a control horizon of 2, and a prediction horizon 
of 7. 
 
Values for the manipulated variable and output 
weights were assigned empirically. 
 
 

5. CLOSED-LOOP SIMULATION 
 
5.1 Results 
 
In this section selected key output and manipulated 
input graphs are shown.  The closed-loop system was 
simulated over the last 4 months of the 9 month 
period simulated in the open-loop simulation.  An 
extra month was added to make the simulation period 
5 months. 
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Fig. 4. OO ARPU in the Business Low Market 

Segment 
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Fig. 5. Total OO Revenue in the Business Low 

Market Segment 
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Fig. 6. Peak Tariffs for OO Price Plan 2 
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Fig. 7. Off-Peak Tariffs for OO Price Plan 3 
 
5.2 Discussion 
 
The controller manages to successfully maximise the 
ARPU signal (the ARPU signals approach the 
increased set points of 5% above the values recorded 
in the open-loop simulation) for all 5 market 
segments (see Fig. 4 as an example).  By increasing 
the ARPU for each market segment the controller 
manages to increase the revenue per market segment 
above the totals recorded per month in the open-loop 
simulation (although this was not the primary focus 
on the controller) as shown in Fig. 5.  This is 
achieved by calculating the change in the tariffs 
which are inputs into the model – see Fig. 6 and Fig. 
7 for examples of tariff trends. 
 
The total additional revenue achieved by increasing 
the ARPU by 5 %, is 3.62% over the open-loop 
simulation.  This amounts to a very significant 
revenue increase in monetary terms. 
 
The Nyquist frequency of the linear model was 
calculated to be 1/π per month (Haykin, 1994).  
Therefore the minimum sampling rate, and 
subsequently the minimum simulation time 
increment as well as controller simulation time 
increment is π months.  Because of practical 
limitations – the relevant industry data provided is 



     

sampled monthly - it was decided to make the 
subsequent simulation time increment 1 month.  The 
chosen sampling rate is therefore π times greater than 
the Nyquist frequency, but smaller than the standard 
control practice of sampling at not less than 10 times 
the Nyquist frequency.  It is therefore possible that 
some dynamics might be lost. 
 
Furthermore, although the linear model is open loop 
unstable, and neither controllable nor observable, the 
linear controller applied to the non-linear model in 
the simulation produces a stable output. 
 
 
6. CONCLUSIONS AND RECOMMENDATIONS 

 
6.1 Conclusions 
 
The following conclusions can be drawn from the 
research done: 
 
1. A linear feedback, model based predictive 

controller implemented on the non-linear model 
successfully optimises the strategic ARPU 
output vector of the model for the optimising 
operator by manipulating the tariffs of the 
optimising operator. 

2. In addition to the ARPU vector, the revenue 
vector is also increased by 3.62 % resulting in a 
large profit increase for the operator.  Most of 
the other controlled variables are still controlled 
at or close to their respective set points. 

3. The goal of the project as stated in section 1 has 
been successfully achieved, and a foundation has 
been built for future research. 

 
6.2 Further Research 
 
Further research into the following areas is needed in 
order to bring the research done to a state of greater 
maturity which might lead to commercialisation: 
 
1. The observation that an increase in total revenue 

follows when ARPU is maximised will have to 
be verified. 

2. Other outputs than the ARPU could be chosen as 
the primary strategic output to focus on as well.  
Fluctuation between different priority outputs 
and parameters as key performance indicators 
occur often in the marketing departments of 
operators.  One particular output typically 
remains key for a season and then changes to a 
different one.  The controller implemented in 
this research could easily be adjusted in such a 
scenario to focus on the new output variable. 

3. Additional analysis and investigation regarding 
the inherent instability of the linear model 
should be conducted.  The stability of the non-
linear model need to be ascertained and formal 
control design techniques for open-loop unstable 
systems should be experimented with. 

4. Other control strategies could be applied to the 
problem and compared with MPC. 

5. Adaptive control which makes it possible to run 
the system on-line and real time with the internal 

model “learning” and adjusting to changes in the 
external market, would add a significant 
dimension of decision support to management. 

6. The suggestions made by the controller for price 
change should be implemented in real-time on 
an actual case study and the market response 
verified with empirical data. 
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