

DEVELOPMENT OF GRAPHICAL USER INTERFACES IN CONTROL SYSTEMS FOR EDUCATIONAL

LABORATORY WORK IN THE MATLAB ENVIRONMENT

PD PRETORIUS

VAAL UNIVERSTY OF TECHNOLOGY
PRIVATE BAG X021
VANDERBIJLPARK

GAUTENG
SOUTH-AFRICA

1900
+27 (016)-9509437

pd@tritek.ac.za

Abstract: The objective of this research was the design and implementation of reliable
user-friendly Graphical User Interfaces in the MATLAB® environment, that could easily
and effectively be used to solve various control and design problems. These Graphical
User Interfaces have enhanced teaching and learning in the control systems laboratory.

Keywords: Graphical User Interface, Automatic Control Systems, Time- and Frequency
Domain Analysis, Educational Tool.

1. INTRODUCTION

The focus of this research was aimed at developing
user-friendly Graphical User Interfaces (GUIs) for
second year students (users) in the control laboratory
to improve their knowledge in Automatic Control
Systems. The aim was to provide an added visual
dimension of understanding control systems through
GUIs within MATLAB® 5.3.

The GUIs developed are interactive, windows-based,
graphical user interfaces created to aid in the
understanding of control systems as a subject and to
assist the user as a tool in the design of certain
control systems. These GUIs provide the user with
all of the numerical and graphical information
necessary to make reliable observations, practical
comparisons and conclusions on certain control
problems.

It should be noted that these GUIs, although
providing accurate numerical and graphical data, do
not solve all control problems completely, but
provide just enough information on which the user
may draw conclusions and interact with the GUIs.
These GUIs are essentially user-friendly design
tools.

MATLAB® 5.3 is one of the most powerful
mathematical software programs on the market and
many industries and educational institutions are
currently using this software package globally. For
analysis and design in Automatic Control Systems
this is one of the leading software packages available
on the market. It is a Windows based program but

with a DOS/C++ command foundation. The only
drawback of this software is that it is not very user
friendly, and not all users are sufficient computer
literate for this software. By developing these GUIs a
user with minimal computer skills and control
systems background information can utilise this
software to its highest potential.

2. GUI DEVELOPMENT (The Mathworks Inc.
1997; Glaze 1998)

The GUI development process was undertaken in
two phases, design followed by implementation. The
design phase was aimed at establishing an overall
layout for the tool such as window placement, colour
scheme, etc, whereas the implementation phase
linked the various interface components with external
codes, thus making it operational. In some cases, the
design and implementation phases were performed
simultaneously to meet a desired goal or satisfy a
specified requirement of the design tool.

The Graphical User Interface Development
Environment Tool (GUIDE) within MATLAB® was
used to develop and design the GUIs. In fact, GUIDE
generated the code for the entire layout. The GUI
design tools provided a straightforward approach to
the implementation phase of development. During
the implementation phase, they provided a method of
independently programming each object in the GUIs,
allowed direct manipulation of the GUI appearance,
and presented a graphical representation of the
resulting layout without having to compile and
execute any code. Therefore, MATLAB® provided a

simplistic, efficient means of developing computer-
based design tools.

Unexpected problems occurred during the
implementation phase of the GUIs. Regardless of the
care taken to avoid them, they are usually
responsible for adding undesired time and
complexity to the implementation process. In the
area of GUI implementation, most unexpected
problems are generally attributed to coding mistakes,
or are considered a direct result of misinterpreting
the motivations behind development. The main
problem that arose was to make the GUIs user proof.
To overcome this problem, message boxes were
created and added to the M-file code to guide or
inform the user on errors made using the GUI. Figure
1 presents an example of these message boxes.

Figure 1: Message Box

2.1 Design Phase

The functionality of the GUIs was assessed during
this phase. Assessment involved an iterative process
because the overall functionality of any GUI is
greatly dependent on the ability of the user to
understand the design layout. The usefulness of the
GUIs was then addressed giving special attention to
the overall purpose of each GUI.

Factors that were considered in the overall design of
each GUI included; required user inputs, loading
and/or saving necessary data during operation, easily
understood outputs, and accounting for the
possibility of user error. The layout had to account
for all of these conditions while effectively
accomplishing the purposes of the GUIs.

Each GUI design was laid out as follows:

• Definition of the Task | Drawing the GUI
• Drawing the GUI | Testing the GUI
• Writing the Code | Testing the Code

2.2 Implementation Phase

The implementation of a graphical user interface
requires fundamental knowledge of the subject being
addressed. Secondary to this is the requirement that
the overall design architecture be well understood.
The techniques applied to make the MATLAB®
GUIs operational design tools are explained in
Mathworks Inc (1997). The functions that
MATLAB® Method uses for graphical user interface
manipulation (i.e., editing figure window and user

interface control (uicontrol) properties during
operation) were used extensively throughout the
implementation process.

Linking the many uicontrols required the ability to
locate an object or change its properties during
execution. These properties are also known as
MATLAB® Handle Graphics. For this, there were
several MATLAB® commands. These commands
were used in conjunction with “graphic handles”
which are identifiers associated with graphical
objects in the MATLAB environment.

Two MATLAB® Handle Graphics commands gcf
(get current figure) and gcbf (get callback figure)
were used specifically to locate figure windows. The
gcf command was used to determine the handle of
the current figure window; that is, the window where
the results of commands such as plot would appear.
The gcbf command was used to determine the handle
of the figure window containing the object whose
callback was running at the time. For example, when
a push-button was pressed causing callback
execution, during which its figure window needed
locating, the gcbf command was issued. Each time a
new figure window was opened, it became the
“current figure” and as such was the handle returned
by gcf.

To locate objects other than figure windows, the
more generalized findobj command was used.
Although this particular command has many forms,
the one used throughout the implementation process
discussed here was written as h = findobj
(‘PropertyName’, ‘PropertyValue’) where the
‘PropertyName’ was the handle of all graphic objects
having the property ‘PropertyName’, set to the value
‘PropertyValue’ and ‘h’ was the handle. To ensure
proper object location using this command, the most
commonly used ‘PropertyName’ was ‘Tag’, and the
‘PropertyValue’ was then the unique name given to
that object during the design phase.

Once an object handle was determined, its properties
were determined and/or modified. The two
MATLAB® commands used to accomplish this are
appropriately named get and set. In its simplest form,
get(object), the get command was used to provide a
listing of all the properties associated with an object
and their current values. To determine the value of a
specific object property, the get command was
appended causing it to search exclusively for that
property; get(object, ‘propertyname’). Similarly, the
set command has multiple uses; it was used to
modify single sets of properties;
set(object,‘propertyname’,new value).

3. RESULTS

The following Graphical User Interfaces were
developed for the control systems laboratory:

• Poles, Zeros and Partial-Fraction Expansion
GUI

• Complex Block Diagram GUI
• Routh-Hurwitz Criterion GUI

• Time and Frequency-Domain Analysis GUI

The most powerful GUI developed during this study
was the Time and Frequency Domain-Analysis GUI
which will be discussed here as an example.

3.1 Time and Frequency Domain Analysis GUI

This GUI provides the user with time and frequency
attributes of any second order system, but its main
objective is to assist the users in understanding the
concept of time and frequency domain analysis of
certain control systems. The user is evaluated on a
variety of control problems listed in the pull-down
menu of the GUI.

Use of this GUI in the control systems laboratory
requires that the user understands the principles and
methods used to conduct time and frequency domain
analysis of certain control systems. Normally these
analyses require a massive load of mathematical
calculations before responses can be plotted.
However GUIs facilitate simultaneous visualisation,
thus stimulating the user’s knowledge on time and
frequency domain analysis.

3.2 Basic GUI Operation

Basic operation of the ‘Time and Frequency Domain
Analysis GUI’ is straightforward. The six basic steps
are listed below:

1. Run MATLAB .
2. Change the present working directory to:

C:\MATLABR11\toolbox\MyGuis\EIBEH2
\Pr6.

3. Type IPDATA_GUI at the MATLAB
command prompt.

4. Enter the transfer function or design value
in the appropriated edit boxes.

5. Observe the time and frequency attributes
and interact with the GUI on the
observations made if required by the control
problem in question.

6. Submit the user interactive data.

3.2 Systematic Example

A certain time response is given to the user to
conduct Time and Frequency Domain Analysis. This
analysis is shown in the example below.

Step 1

Run MATLAB 5.3

Step 2
Change the present working directory by typing the
following at the MATLAB command prompt:
» cd C:\MATLABR11\toolbox\MyGuis\EIBEH2\Pr6↵
»

Step 3

Load IPDATA_GUI.m by typing the following at the
MATLAB command prompt:
» IPDATA_GUI↵
»

Step 4

Enter the percentage maximum over shoot found
from the time response given in the ‘%MO’ edit box
and the time when the maximum value was reached
in the ‘Tmax’ edit box. After entering these values,
the GUI will respond as follows:

• Calculates all time attributes and a certain
amount of frequency attributes

• Plots a unit step response of the system
entered in the LTI-Viewer

Figure 2 represents the status of the GUI after
entering the design values. The LTI-Viewer with the
unit step response of the system entered is shown in
Figure 3.

Figure 2: Step 4; Time and Frequency Domain

Analysis GUI

Figure 3: Step 4, LTI-Viewer with Time response

Step 5

The user data now found can be submitted via the
‘Time Domain Analysis’ pull-down menu. Click on
the menu and check the appropriated number as
shown in Figure 4. The user data found are submitted
as ‘Exercise 7.12’ in the example. The ‘Kt’ and ‘K’
edit boxes are only used for certain control problems
in which the user will enter the design values found
depending on the control problem given. After
submitting the control problem the user can continue
with the next problem and repeat the procedures used
in steps 4 to 5.

Figure 4: Step 5; Time and Frequency Domain

Analysis GUI

Step 6

After entering the design values as in Step 4, the GUI
responded as presented in Figure 2 and loaded the
LTI-Viewer with a unit step response as shown in
Figure 3. Right click with the mouse on the axis of
the unit step response of the LTI-Viewer. A context
menu appears with options to choose from, move the
mouse pointer to the ‘Plot Type’ menu option and
select the ‘Bode’ or ‘Nichols’ option as shown in
Figure 5.

Figure 5: Step 6, selecting the ‘Bode’ plot using the

Uicontext Menu

After clicking on the ‘Bode’ option the LTI-Viewer
will plot the frequency response as shown in Figure
6.

Figure 6: Step 6, LTI-Viewer with the Bode plot

Right click on any one of the axes to find attributes
such as gain margin, phase margin, gain crossover
frequency and phase crossover frequency. A context
menu will appear, move the mouse pointer to
‘Characteristics’ menu option and click on the
‘Stability Margins’ as shown in Figure 7. The LTI-
Viewer will mark the closed-loop attributes, gain
margin and phase margin, with blue markers on
which the user can click and by holding the mouse
button, the values will be displayed as shown in
Figure 8. These values are then entered in: ‘GM’,
‘GCF’, ‘PM’ and ‘PCF’ edit boxes. The values
displayed in Figure 8 are as follows: Phase Margin =
69.6°, Frequency = 399 rad/sec. Using Frequency
Domain Analysis theory the user can conclude that
the frequency given at the point where the phase
margin is measured to be the gain crossover
frequency (Kuo 1995: 539-634).

Figure 7: Step 6, selecting the ‘Stability Margins’

using the Uicontext Menu

Figure 8: Step 6, stability margins

The user then enters the values found from the
‘Bode’ or ‘Nichols’ plot and then submits this user
interactive data for evaluation.

The ‘Kt’ and ‘K’ edit boxes are only used for certain
control problems in which the user will enter the
design values found depending on the control
problem given.

In this example, the user data are as presented in
Table 1 and Figures 3 and 8.

Table 1 User Data

Time Domain Analysis Frequency Domain
Analysis

0038068.0
003573.0
023083.0

sec01.0
25%

sec/3863.343
40371.0

max

=
=
=

=
=

=
=

r

d

s

T
T
T
T

MO
radn

Zeta
ω

∞=
=

=
∞=
=

=
=
=

PCF
PM

radGCF
GM
BW
BW

radr
Mr

o6.69

sec/399

37112.1
826.470

sec/9183.281
3537.1

min

ω

Step 7

This step is only for the use of the facilitator. Once
the user has finished all control problems given, the
facilitator enters a password in the ‘Password’ edit
box and a message box will appear with the user’s
evaluation mark as shown in Figure 9. The square
bracket associated to each “Exercise” (7.12-7-18,
9.3-9.6, 9.29, 9.30 and 9.47), indicates which
specific problem has been submitted. Observing
Figure 9 the facilitator concludes; that the users has
submitted only Exercise 7.12 of the problems in
“Exercise 7.12-7.18” and has 100 percent for that
specific problem, and has done none of the other
problems in this sections.

Figure 9: Step 7, Practical Mark; Time and

Frequency Domain Analysis GUI

3.3 GUI Results

The interactive data found such as the time- and
frequency-domain attributes, is found by means of
observing the responses plotted by the LTI-Viewer
and then entered via the GUI. The user’s theoretical
knowledge on time and frequency domain analysis is
then assessed by means of the built-in self-
assessment function of the GUI.

4. ADVANTAGES

Advantages of Using these GUIs Include:

• Reducing time spent on control problems.
• Minimising human error in certain

mathematical calculations.
• Adding a 3rd dimension to control systems.
• Improves the users understanding of control

systems.
• Provides experience of using graphical user

interfaces.

Moreover there are two main advantages to the
facilitator:

• Automation of the control laboratory.
• Specific assessment of the user’s

knowledge.

5. CONCLUSION

The development and implementation of graphical
user interfaces in the MATLAB environment has
contributed to improved teaching and learning in
control systems laboratories, by streamlining
calculations and evaluation procedures. Moreover,
students’ understanding of control systems is
enhanced by real-time visual (graphic) display.

REFERENCES

Cavallo A., Setola R., & Vasca F. (1996). Using

MATLAB, SIMULINK and Control Systems
Toolbox. Hertfordshire, Europe: Prentice Hall.

Glaze M.L. (1998). The Design and Implementation
of a GUI-Based Control Allocation Toolbox in
the MATLAB Environment. Masters
dissertation: Virginia State University.

Hanselam D.C. & Kuo B.C. (1995). MATLAB Tools
for Control System Analysis and Design,
Second Edition. Englewood Cliffs: Prentice
Hall.

Hanselam D.C. & Littlefield B. (1996). Mastering
MATLAB . Upper Saddle River, New Jersey:
Prentice Hall.

Kuo B.C. (1995). Automatic Control Systems,
Seventh Edition. Englewood Cliffs: Prentice
Hall.

Nakamura S. (1996). Numerical Analysis and
Graphic Visualization with MATLAB . Upper
Saddle River, New Jersey: Prentice Hall.

Nise N.S. (2000). Control Systems Engineering,
Third Edition. New York: Wiley & Sons.

Ogata K. (1997). Modern Control Engineering.
Upper Saddle River, New Jersey: Prentice Hall.

The Mathworks Inc (1996). - Using MATLAB
Graphics - Version 5, MATLAB, the Language
of Technical Computing. Natick,
Massachusetts: The Mathworks.

The Mathworks Inc (1997). - Building GUIs with
MATLAB - Version 5, MATLAB, the Language
of Technical Computing. Natick,
Massachusetts: The Mathworks.

The Mathworks Inc (1998). - User’s Guide - Version
4, Control System Toolbox User’s GUIDE.
Natick, Massachusetts: The Mathworks.

The Mathworks Inc (1999). - Using MATLAB -
Version 5, MATLAB, the Language of
Technical Computing. Natick, Massachusetts:
The Mathworks.

Umez-eronini E. (1998). System Dynamics &
Control. Pacific Grove: PWS Publishing.

