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Abstract: Singular spectrum analysis of time series observations can be visualized as a 
sliding window of width m moving down the time series x of length n, to determine the 
orthogonal patterns that best capture the variance presented by the window. It is designed 
to extract information from short and noisy time series. This allows the time series to be 
decomposed into various components, ideally separating components containing 
information from those that contain mostly noise. In this paper, Monte Carlo singular 
spectrum analysis is used to separate the components of time series data obtained from 
several real world processes into signal and noise components. The methodology 
facilitates better understanding of the underlying dynamics of complex systems, as well 
as the development of automated plant systems.    
Keywords: Singular Spectrum Analysis, Time Series, Electrochemical Noise. 

 
 
 
 

 
1. INTRODUCTION 

 
It is well known that reliable and effective process 
control, diagnostics of system dynamics, 
troubleshooting and real-time monitoring of assets is 
vital for the efficient and competitive operation of 
any process. Singular spectrum analysis (SSA) is a 
relatively new technique that has been developed 
initially in the field of climatology (Broomhead and 
King, 1986, Vautard and Ghil, 1989, Vautard et al., 
1992), but has since been successfully expanded and 
applied in a variety of other areas, among which are 
the biosciences (Schreiber, 2000, Mineva and 
Popivanov, 1996), geology (Rozynski et al., 2001, 
Schoellhamer, 2001), economics (Kepenne, 1995, 
Ormerod and Campbell, 1997) and solar physics 
(Kepenne, 1995). In simple terms, the technique can 
be visualized as a sliding window of width m moving 
down a time series x of length n, to determine the 
orthogonal patterns that best capture the variance 
presented by the window. With this approach, the 
time series can be decomposed into various 
components, allowing qualitative process dynamics 
to be separated from noisy data (Broomhead and 
King, 1986; Fraedrich, 1986; Vautard and Ghil, 
1989; Vautard et al., 1992).   

Monte Carlo singular spectrum analysis (MC-SSA) 
is a methodology for discriminating between the 
various components of the time series, particularly 

between components containing meaningful 
information and other components containing mostly 
noise. Although so-called white noise (additive mea-
surement noise) is relatively easy to detect and 
remove, the situation becomes more complicated 
when the noise also drives the system, such as is the 
case in autoregressive moving average processes. In 
this paper, application of the method in the analysis 
of process dynamics is considered and the paper is 
organized as follows. The essential methodology of 
SSA is first introduced in section 2, followed by 
several case studies in sections 3 an and 4, and 
conclusions and recommendations in section 5. 

2. METHODOLOGY 
 
2.1 Basic SSA. 
 
The basic methodology of SSA consists of four main 
steps, as indicated in Figure 1 (Golyandina et al., 
2001). The time series is first embedded in a high-
dimensional lagged trajectory matrix (step 1), which 
is then decomposed by means of singular value 
decomposition into the sum of a number of bi-
orthogonal matrices of rank one (step 2). These two 
steps represent the decomposition stage.  

During the reconstruction stage, the components 
represented by the bi-orthogonal matrices obtained in 
step 2 are grouped appropriately (step 3), and finally, 



     

in step 4, the time series components representing the 
various groups can be reconstructed from the 
matrices formed in step 3. 
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Fig. 1. Four basic steps of SSA, namely embedding 

of time series, decomposition by use of singular 
value decomposition, grouping of components 
and reconstruction of additive components. 

 
More formally, SSA is based on calculating the 
principal directions in the lagged trajectory matrix in 
the phase space. An M x M covariance matrix CX 
can be estimated directly from the data and the 
eigenelements λk and ρk (k = 1, 2, … M) of CX are 
obtained from the solution of 

 CXρk = λkρk 

The trace of CX gives the total variance of the 
original time series and the eigenvalue λk equals the 
partial variance in the direction ρk. Equivalently an 
M x M matrix EX can be formed, with columns ρk 
and the diagonal matrix ΛX with eigenvalues λk as 
elements in decreasing order, so that 

 EX
TCXEX = ΛX  

Grouping of the components of the time series is 
based on an analysis of the eigenspectrum ΛX. 

2.2 Monte Carlo SSA. 
 
Monte Carlo SSA (MC-SSA) is an extension of basic 
SSA and is used to gain a better understanding of the 
time series or some of its components by testing 
various hypotheses about the data. This is done by 
using a discriminating statistic, such as the 
autocorrelation, the correlation dimension or some 
other statistic to compare the time series under 
investigation with that of a number simulated 
realizations of stochastic processes derived from the 
original time series. In the nonlinear dynamics 
literature, such realizations are often referred to as 
surrogate data.  

As a trivial example, consider a time series x(t), t = 
1, 2, 3 … N, suspected to be white noise. To test this 
hypothesis by means of Monte Carlo singular 
spectrum analysis, the discriminating statistic could 
be the autocorrelation of the time series at a certain 
lag, say τ = 1, or the predictability of the time series 
by some model, etc. Surrogate data are subsequently 
generated from the data, by randomizing the time 

series, with each surrogate data set representing 
particular instance of the randomized time series, i.e. 
xs

j(t), with t = 1, 2, ... N and j = 1, 2, .. M, the number 
of surrogate time series. 
 

 
Fig. 2. Four basic steps of SSA, namely embedding 

of time series, decomposition by use of PCA or 
SVD, grouping of components and reconstruction 
of additive components. 

 
The discriminating statistic is then calculated for the 
original time series (e.g. the one-step ahead 
predictability of the time series), as well as for each 
surrogate time series. If the predictabilities of the 
original time series and its surrogates do not differ, it 
has to be concluded that the original time series is 
indistinguishable from its surrogates and may well be 
white noise. The idea is illustrated in Figure 2. 

More formally, the covariance matrix CR of the 
surrogate data are projected onto the eigenvector 
basis EX of the original time series, so that 

 ΛR = EX
TCREX 

The matrix ΛR is generally not diagonal, since ΛR is 
not the result of singular value decomposition of the 
surrogate data set, but is a measure of the similarity 
of the given surrogate data set with the original time 
series. The degree of similarity can be quantified by 
computing the statistics of the diagonal elements of 
ΛR via Monte Carlo simulation. 

3. SULPHURIC ACID CONCENTRATION IN A 
LEACH CIRCUIT 

3.1 Background 

The leaching of a valuable metal on an industrial 
plant is controlled by addition of acid to a series of 
leaching tanks. Manual dosage of the acid by an 
operator is complicated by the large residence time of 
the ore in the vessels, so that the effects of over- or 
underdosage are only discovered after the fact. A 
better understanding of the dynamics of the metal 
and the acid concentration could therefore lead to 
large improvement in the control of the leaching 
process by means of a model-based control system.  
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Fig. 3. Sample of twice-daily observations of scaled 

sulphuric acid concentration in the anolyte (top) 
and feed (bottom) of an industrial leach plant.  

 
The data in Figure 3 shows 2000 twice-daily 
observations of the (scaled) concentrations of the 
H2SO4 in the anolyte (solid line), while the broken 
line shows the acid concentration in the feed.  Figure 
4 shows the confidence limits for an SSA 
eigenspectrum, given the time series, where the null 
hypothesis tested was that the data have been   
generated by a deterministic signal composed of the 
1st eigenvector, contaminated by a 1st order 
autoregressive process, AR(1), with unknown mean. 
The parameters for the AR(1) process were estimated 
from the data, after removal of the signal, and then 
used to generate realizations of AR(1) noise. The 
covariance matrix was computed after adding the 
signal to these surrogate realizations, while the 
eigenspectra were computed by projection onto the 
basis E. These surrogate eigenspectra were sub-
sequently used to construct the 90% and 95% 
confidence interval shown in Figure 4. 

As can be seen from Figure 4, the null hypothesis 
appears to be valid in the case of the acid 
concentration in the feed (bottom), but may not be 
acceptable in the case of the acid in the anolyte. This 
information can be used to considerable advantage in 
the modelling and control of the process, especially 
in the case of the acid in the anolyte. 
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Fig. 4. Sample of twice-daily observations of scaled 

sulphuric acid concentration in the anolyte (top) 
and feed (bottom) of an industrial leach plant.  

 
4. MODELLING OF MILLING CIRCUIT ON A 

GOLD PLANT 
 

The grinding circuit on the Leeudoorn gold mine in 
South Africa (capacity approximately 8 ton per 
annum) consists of two Polysius 5 m x 11 m single-
stage semi-autogenous grinding mills, each equipped 
with Siemens variable speed gearless ring motor 
drives. Classification is accomplished by two-stage 
hydrocyclones, with a final product size of 80% 
passing 75 µm. The circuit has a Polysius stacker and 
reclaimer system with a total live stock pile capacity 
of 100 000 tons. The grinding circuit is followed by 
conventional thickening, cyanide leaching and 
carbon-in-pulp (CIP) circuits. The instrumentation of 
the circuit includes a belt weigher to measure the mill 
feed rate, sump level measurement, flow rates, 
density and pressure measurement on the cyclone 
feed streams, mill power, mass (via load cells) and 
speed measurements. The final product size is 
measured by means of an Outokumpu particle size 
indicator.  

Figure 5 shows the scaled power draw of the semi-
autogenous (SAG) mill, which consisted of 1140 
hourly measurements. These data were embedded in 
a lagged trajectory matrix with 40 columns, which 
was decomposed to give a singular spectrum as 
indicated in Figure 6. Surrogate data representing red 
noise (1st order autoregressive process) were 
projected onto the eigenbasis of the original data to 
yield the 90% and 95% confidence limits as shown 
on Figure 6.  
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Fig. 5. Scaled power consumption of the SAG mill. 
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Fig. 6. Eigenspectra of the data shown in Fig. 5, as 
well as surrogate data generated from these data. 
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Fig. 7. Eigenspectra of the data shown in Fig. 5, as 
well as surrogate data generated from these data, 
after removal of the signal component of the data, 
associated with the 1st eigenvalue shown in Fig. 6. 

 
The most striking feature of Figure 6, is the location 
of the first eigenvalue, which lies far above the 
confidence limits of the AR(1) process. This suggests 
that the mill power draw has characteristic dynamics, 
which may be contaminated with correlated noise.  

Figure 7 shows that this is indeed the case. In this 
figure, the process dynamics (signal) associated with 
the first eigenvalue has been separated from the 
remainder of the components and as before the 
parameters for the AR(1) process were estimated 
from the data, after removal of the signal. The 
residual data were used to generate realizations of 
AR(1) noise, the signal was added back to the 

surrogate data before the covariance matrix was 
computed. The eigenspectra of the surrogate data 
were computed by projection onto the basis E. These 
surrogate eigenspectra were subsequently used to 
construct the 90% and 95% confidence interval 
shown in Figure 6. As can be seen from Figure 7, the 
eigenspectrum of the time series without the signal is 
confined within the confidence limits of the AR(1) 
process. Therefore, the mill power draw can be 
decomposed into a signal component and noise, 
which follows a 1st order autoregressive process. The 
signal component is shown in Figure 8, while the 
AR(1) noise component is shown in Figure 9. 
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Fig. 8. Signal component of mill power consumption. 
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Fig. 9. AR(1) noise component of mill power 
consumption. 

The attractors of the signal and noise components of 
the mill power draw are shown in Figures 10 and 11 
respectively. Note the smoother attractor of the 
signal, as opposed to the more spiky appearance of 
the attractor of the noise component, as would be 
expected of a signal more predictable than the noise. 

A more in-depth analysis of the two components is 
possible by further decomposition, but this analysis is 
beyond the scope of the paper. 



     

-2
0

2
4

-2

0

2

-3

-2

-1

0

1

2

3

PC1 
 (32.13%)

PC2 
 (14.85%)

P
C

3 
 (1

4.
63

%
)

 
Fig. 10. Attractor of signal component of mill power 

consumption. 
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Fig. 11. Attractor of AR(1) noise component of mill 

power consumption. 
 

5. ELECTROCHEMICAL NOISE DATA 
 
5.1 Background 
 
In the final example, data generated by a nonlinear 
deterministic process are considered. The data were 
obtained from a laboratory experiment, and represent 
electrochemical noise resulting from the corrosion of 
304 stainless steel in hydrochloric acid (De Wet, 
2001). The reasoning behind the measurement of the 
electrochemical noise properties was that the 
corrosion of metals is an electrochemical 
phenomenon and therefore these parameters can be 
used to provide an estimate of the corrosive process. 

The material used was stainless steel 304 and both 
the electrochemical current noise and the 
electrochemical potential noise were measured 
simultaneously, by using a zero resistance ammeter 
and a high impedance voltmeter respectively. In 
order to measure the potential and current noise 
simultaneously and accurately, a three-electrode 
sensor was used. The current was then measured 
between two of the sensor elements and while the 
potential was measured between the third element, 
used as a reference, and the two coupled elements. 
The sampling rate for the measured time series was 
0.432s, which led to the collection of 3156 
observations. A sample of the observed time series 
from the current noise is displayed in Figure 12. 
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Fig. 12. Typical sample of electrochemical current 

noise measurements. 
 
5.2 Classification of data 
 
Monte Carlo SSA was used to classify the data as 
discussed above. The confidence limits for the 
eigenspectra of 1st order autoregressive processes, 
along with the eigenspectrum of the electrochemical 
current noise series, are shown in Figure 13. 
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Fig. 13. Eigenspectrum of electrochemical current 

noise series along with 95% confidence limits 
generated from 15 first order autoregressive 
surrogate series. 

 
From this figure, it is clear that the eigenspectrum of 
electrochemical noise process falls outside the 
confidence bands for the eigenspectrum of a first 
order autoregressive process, and that the data cannot 
be treated as an autoregressive process. Although not 
shown here in detail, separation of the components 
into signal and noise were not successful and it 
appears as if the signal contains little noise, as 
suggested by the accuracy with which the process 
could be modelled, as discussed in more detail 
below. 

5.3 Modelling of time series 
 
The accuracy of the classification by Monte Carlo 
SSA was investigated by fitting nonlinear one-step 
ahead models to the data. Figure 14 illustrates the 
accuracy of a multilayer perceptron neural network, 
as well as a regression tree. An AR(1) model is 
included for comparative purposes. The neural 
network has ten inputs with a lag of unity, while the 



     

regrssion tree had one such input only, so the 
performance of the models is not comparable.  
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Fig. 14. Modelling predictions of the electrochemical 

current noise series (solid markers) by a 1st order 
autoregressive model (solid line), multilayer 
perceptron neural network (dotted line) and 
regression tree (dashed line). 

 
Figure 15 shows the free-run prediction by the neural 
network model. With this approach, predicted values 
are used as input for future predictions. Small errors 
in prediction accumulate and can lead to rapid 
deterioration in the performance of the model. This is 
not the case in this instance and it appears as if the 
neural network has managed to capture the 
underlying dynamics of the process with a very high 
degree of accuracy, suggesting a highly deterministic 
process with little noise.  
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Fig. 15. Free-run prediction of electrochemical 

current noise data using a multi-layer perceptron 
neural network. 

 
 

6. CONCLUSIONS 
 

The analysis of dynamic process data provides 
crucial information in the automation of plants and 
process systems. By decomposing time series data 
into various components, a better understanding of 
the process is possible. Separation of the time series 
observation into signal and noise components is 
particularly important and in this paper the approach 
was demonstrated via several case studies on real 
world data. Although univariate time series were 
considered only, the approach is readily extendable 
to multivariate systems, as well as cross-spectral 
analysis of the data and further work in this regard is 
currently being pursued by the authors. 
 

ACKNOWLEDGEMENTS 
 
The authors are grateful for the financial support 
provided by Mintek, in particular the bursary 
afforded to Ms Barkhuizen.  

 
REFERENCES 

 
Broomhead, D. S. and King, G. P., (1986), Physica 

D, 20, 217-236. 
Golyandini et al. 2001 
Elsner and Tsonis, 2000. 
Kepenne, C. L., (1995), Journal of Climate, 8, 1685-

1689. 
Mineva, A. and Popivanov, D., (1996), Journal of 

Neuroscience Methods, 68, 91-99. 
Ormerod, P. and Campbell, M., (1997), In System 

dynamics in economic and financial models 
(Eds, Heij, C., Schuacher, J. m., Hanzon, B. and 
Praagman, C.) John Wiley. 

Rozynski, G., Larson, M. and Pruszak, Z., (2001), 
Coastal Engineering, 43, 41-58. 

Schoellhamer, D. H., (2001), Geophysical Research 
Letters, 28, 3187-3190. 

Schreiber, T., (2000), In Chaos in Brain? (Eds, 
Lehnertz, K., Elger, C. E., Arnhold, J. and 
Grassberger, P.) World Scientific, Singapore. 

Vautard, R. and Ghil, M., (1989), Physica D: 
Nonlinear Phenomena, 35, 395-424. 

Vautard, R., Yiou, P. and Ghil, M., (1992), Physica 
D: Nonlinear Phenomena, 58, 95-126. 

 


