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Abstract: A novel attitude measuring sensor is presented to be used on agile
satellites without any angular field of view restrictions. The sensor is based
on low-cost, medium resolution attitude vector measurements, obtained from
geomagnetic detectors (magnetometers) and coarse sun sensors (solar cells). The
vector measurements chosen, have an unrestricted field of view and a reasonably
high response bandwidth as required during agile satellite manoeuvres. Low-
cost solid state angular rate sensors with moderate to high drift bias are used
to propagate the attitude between vector measurements. All sensor outputs are
validated by a pre-filtering process to eliminate spurious or faulty sensors, before
feeding the data into an extended Kalman filter (EKF). The EKF is used to
estimate the attitude quaternion and angular rate sensor (gyroscope) bias vectors.
Practical results from a rotating platform is presented to verify the theoretical
and simulation performance. This new sensor has direct application in satellite
attitude estimation owing to it’s robust and good performance.

Keywords: Micro Satellites; Attitude Estimation; Extended Kalman Filter
(EKF).

1. INTRODUCTION

The orientation of micro satellites may be robustly
determined using two non-coincident vector mea-
surements. A combination of a geomagnetic detec-
tor (3-axis magnetometer) and a coarse sun sensor
array (solar cells) are a particularly suited pair for
a polar or sun synchronous orbit. The combination
allows low-cost continuous unrestricted satellite
attitude measurements during the important day
part of the orbit with reasonable accuracy of bet-
ter than 1◦.

The dynamic performance of an agile satellite may
be enhanced using gyroscopes. Unfortunately,
these gyroscopes are expensive and power hungry,
which limited their use to date on smaller satel-
lites. The availability of MEMS gyroscopes at very
low cost (about USD30) makes this option now
feasible. The performance and robustness can be

extended by using multiples of these gyroscopes
per axis.

A novel robust attitude Extended Kalman Filter
(EKF) is constructed using an innovation mixing
mechanism. This scheme allows the flexible use
of multiple sensor vectors without a substantial
increase in the complexity of the gain calculation
of the EKF.

2. SENSORS

The main attitude sensors consist of:

• Coarse Sun Sensor (CSS), consisting of 6
solar cells, one per satellite facet — see Fig-
ure 1. Vector measurements are generated by
calculating the current difference from oppo-
site sides. A unit vector is generated from the
3-axis measurement and a confidence flag cs



is generated based on the measurement size.
The current from the solar cell is modulated
by the cosine of the incidence angle from
normal. Deviations from this ideal response
occur when the incidence angle on the panel
is small. Correction for the earth Albedo ef-
fect, using a earth model, is described in [6].

Fig. 1. Coarse Sun Sensor Configuration

• A 3-axis magnetometer (Honeywell HMS2300
or similar). A unit vector is generated from
the 3-axis measurement and a confidence flag
cm is generated based on the status (ON,
valid communications etc.) and measurement
size.

• (Multiple) low-cost MEMS gyros (Analog
Devices ADXRS150 or similar), one or more
per axis. Depending on the complexity of the
temperature and offset compensation, the
gyro drift performance can approach 70◦/hr.

The formation of the measurement vectors are
illustrated in Figure 2.

Fig. 2. Forming the Sensor Measurement Vectors

The sun vector can be updated at the desired
rate, but the magnetometer measurements will
typically be interleaved between magneto-torquer
pulses (time-sliced), so a practical magnetometer
measurement update period can be 2–10 sec.

3. EKF FORMULATION

Analysis follows that of the Multiplying EKF
(MEKF) from [2], [3] and [5].

Let the measurement from the gyro u be related
to the actual rate ω, bias rate b and measurement
noise η1

u = ω + b + η1

Our best estimate of the rate is then

ω̂ = u− b̂

The bias rate equation is described by a random
walk process

ḃ = η2

Compose the 6-element state vector as consist-
ing of the vector part of the error quaternion
δq1 . . . δq3 and the gyro drift-rate bias vector
δbx . . . δbz

x(t) =




δq1(t)
δq2(t)
δq3(t)
δbx(t)
δby(t)
δbz(t)




The true attitude quaternion is given by (note the
rotated sequence)

q = q̂ ⊗ δq

where ⊗ denotes a quaternion multiplication —
see [2], section IV.

The state equation for the system is given by

d

dt
x(t) = f(x(t), t) + g(x(t), t)w(t)

with w(t) = system noise with covariance matrix
Q(t).

The state error vector and covariance matrix are
defined by

∆x(t) = x(t)− x̂(t)

P (t) = E [∆x(t)∆xT (t)]

so the state error vector satisfies the differential
equation

d

dt
∆x(t) = F (t)∆x(t) + G(t)w(t)

with

F (t) =
∂

∂x
f(x(t), t)|x̂(t)

G(t) = g(x̂(t), t)

The predicted covariance matrix satisfies the dif-
ferential equation

d

dt
P (t) = F (t)P (t) + P (t)FT (t) + G(t)Q(t)GT (t)

For the sixth-order body referenced model, we get



F (t) =




[ω(t)×] | −1
2

I3×3

−−−−− + −−−−−
03×3 | 03×3




G(t) =




−1
2

I3×3 | 03×3

−−−−− + −−−−−
03×3 | I3×3




We can integrate F (t) numerically to get the
discrete state space matrix Φ(k)

Φ(k) = I3×3 + F (k)δt + . . .

For a small sample period (δt ¿ 1), we can
approximate

Φ(k) ≈




1 ωzδt −ωyδt −0.5δt 0 0
−ωzδt 1 ωxδt 0 −0.5δt 0
ωyδt −ωxδt 1 0 0 −0.5δt

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




3.1 Innovation

The innovation is determined from the cross-
product also used by [4] and [5].

Let the innovation im(k) be given by the cross-
product of the measurement vm(k) and the refer-
ence vector v̂b(k) in body coordinates

im(k) = vm(k)× v̂b(k) = vm(k)×A(q̂)v̂r(k)

After some manipulation, the measurement sensi-
tivity H(k) becomes

H(k) =
[
Ha(v̂b) | 03×3

]

with

Ha(v̂b) = 2




v̂2
bz + v̂2

by −v̂bxv̂by −v̂bxv̂bz

−v̂by v̂bx v̂2
bx + v̂2

bz −v̂by v̂bz

−v̂bz v̂bx −v̂bz v̂by v̂2
by + v̂2

bx




3.2 Gain and Covariance Calculation

The covariance update P+(k) and gain K(k) are
calculated by

K(k) =P−(k)HT (k)
[
H(k)P−(k)HT (k) + R(k)

]−1

P+(k) =(I −K(k)H(k))P−(k)

with Q(k) =
∫ T

0
G(t)Q(t)GT (t) dt.

The covariance predictor P−(k + 1) for the EKF
is given by

P−(k + 1) = Φ(k)P+(k)ΦT (k) + Q

3.3 State Update

• The error quaternion is calculated from the
innovation vector im and quaternion gain
submatrix Kq

δ~q (k) = Kq(k) im(k)

and then the error quaternion is normalised

δq4(k) =
√

1− ‖δ~q (k)‖, δq(k) =
[

δ~q (k)
δq4(k)

]

The bias vector is calculated from the
innovation vector im and bias gain submatrix
Kb

δb(k) = Kb(k) im(k)

• The corrected state is now formed from

x̂+(k) =
[

q̂+(k)
b̂+(k)

]
with

q̂+(k) = δq(k)⊗ q̂(k)−

and
b̂+(k) = b̂(k)− + δb(k)

• The predicted state x̂−(k+1) =
[

q̂−

b̂−

]
(k+1)

is formed using the quaternion integration
from [1]

q̂−(k + 1) =
[
I cos

ω̂δt

2
+

Ω
ω̂

sin
ω̂δt

2

]
q̂+(k),

with ω̂(k) =
√

ω̂2
x + ω̂2

y + ω̂2
z ,

and the bias states are simply propagated
as

b̂−(k + 1) = b̂+(k)

3.4 Block diagram

A block diagram combining the above mentioned
equations is shown in Figure 3.

Fig. 3. MEKF Block Diagram



4. SENSOR MIXING

Consider the case in Figure 4 where n sensor
measurements (unit vectors) are referred to the
body, and n innovation sequences i0 . . . in−1 are
created.

Fig. 4. Innovation based sensor mixing scheme

A number of strategies might be considered for
combining the individual innovation sequences
into one combined innovation sequence. A weighted
scheme was selected

i(k) =
n∑

i=1

wi(k)ii(k),
n∑

i=1

wi(k) = 1

The number of vectors in this application are
insufficient for implementing a complete fault tol-
erant scheme. However, it still allows disturbance
rejection through the choices of weights. The sen-
sor confidence indicators which checks the total
CSS sensor current and magnetic field against a
design window, can be used to temporary disable
or reduce the effect of a faulty measurement vec-
tor.

In the normal case the weights can be based on
the known sensor noise covariances Ri. If the two
vector measurements are independent, then the
weights may then calculated from

wi =
√

Ri




n∑

j=1

√
Rj



−1

, R−1 =
n∑

j=1

R−1
j

This strategy is simple to implement,and it can
accommodate known changes in sensor noise.

For the two-sensor case, we have

w1 =
√

R1

[√
R1 +

√
R2

]−1

,

w2 =
√

R2

[√
R1 +

√
R2

]−1

,

R =R1R2 [R1 + R2]
−1

The performance may be further enhanced by
modulating the sensor noise covariances at known
positions. For example, the geomagnetic measure-
ments close to the poles and the sun sensor mea-
surements at low incidence angles on the solar cells
will lead to increased errors for affected vector
measurement.

5. PRACTICAL RESULTS

The EKF described was implemented on a demon-
strator consisting of rotating base limited in ro-
tation around the Z-axis only. The hardware
on this base consisted of 2× yaw measurement
ADXL150 MEMS gyros, 4× solar panels and
a HMR2300 magnetometer. The measurements
were integrated using a Cygnal USB microcon-
troller at a sample period of 0.1 sec. The attitude
EKF was run on a PC in real-time using a C-
program.

The reference IGRF and sun vectors are up-
dated using the measurement position latitude-
longitude coordinates and local time. No Albedo
compensation was performed for these experi-
ments. Compensation for the MEMS gyros were
limited to first-order compensation for tempera-
ture and offset.

5.1 Measured Performance

The gyro bias estimation performance of the at-
titude control system, for an arbitary platform
attitude rate profile is shown in Figure 5 for the
combined sensor innovation strategy.
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Fig. 5. Typical bias rate estimation

Note that the bias estimate includes effects such
as rate calibration errors etc. (the rate scale factor
error changes the sign of the bias error in Fig-
ure 5).

The typical yaw angle estimation of the atti-
tude control system, with the base rotating at a
constant speed about -3 mrad/sec and with the
combined sensor innovation strategy, is shown in
Figure 6.

6. CONCLUSION

The configuration used in this paper uses the
MEKF concepts defined in [2] and [3] with the
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Fig. 6. Typical yaw angle estimation error of the
estimated yaw angle relative to the integral
of the line-of-sight rate, using both vector
measurements and with the platform moving
at a constant rate.

cross-product innovation in [4] and [5]. The two
sensor vector measurements from the coarse sun
sensors and magnetometer similar to [6] is used.

A low-cost gyro is added to extend the tracking
performance for an agile satellite, even when the
magnetometer data rate is low. Although these
gyros are not suitable for the prediction of at-
titude for longer than a few minutes, their low
power and high reliability augments the other
sensors to provide a smooth and robust attitude
estimate.

A novel method of combining the innovation from
the sensors is presented that allows an arbitrary
number of sensor measurements to be used si-
multaneously without a substantial increase in
processing. This enables practical on-line EKF
gain calculation instead of less accurate fixed-gain
banked filters.
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