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Abstract: In the recent contributions Bosch and Petersen (2003) and Petersen, et al.,
(2003) the notion of stochastic controllability within the framework of linear interest
rate models of Heath-Jarrow-Morton-Musiela (HJMM) type was introduced. There
the aforementioned interest rate model was represented by an infinite dimensional
stochastic differential equation whose drift term could be influenced by a special
type of (additive) control function. As was the case in that paper, our contribution
will concentrate exclusively on derived differential models that have mild solutions.
Interest rate models belonging to the HIMM class that are widely used in practice
are the Ho-Lee, Hull-White, Black-Karasinsky and Cox-Ingersoll-Ross models. An
investigation into the stochastic controllability of these specific models is therefore of
considerable interest to practitioners in the financial sector.
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1. INTRODUCTION

This contribution investigates the controllability
of linear interest rate models in practice and is
a natural extension of the paper Petersen, et al.
(2003). This paper provided necessary an suffi-
cient conditions for the stochastic controllability
of linear stochastic interest rate models of the
Heath-Jarrow-Morton-Musiela (HIMM) type (see
Heath, et al., 1992; Brace and Musiela 1994 and
Musiela, 1994). In the sequel, we shall investigate
four examples of the use of stochastic optimal
control in solving problems related to interest rate
models of HIMM type that are used in practice.

The motivation for such research is that in order
to make the contribution Petersen et al. (2003) of
greater practical significance one must be able to
apply the results to models currently used in the
financial industry. Although this short paper does
not furnish a numerical example, it attempts to
narrow the gap between the theory and practice
in the field of continuous time interest rate theory.

2. THE CONTROLLABILITY OF HIMM
INTEREST RATE MODELS

In this section, we provide a brief description
of the HIMM interest rate model that we will
consider. In addition, in Subsection 2.2, we decide
on the most economic Hilbert space to be con-
sidered as a state space of forward rate curves.
In Subsection 2.3 we construct the subclass of
HJMM interest rate models that is amenable to
stochastic controllability. Finally, in Subsection
2.4 we collect important information that will be
used in the main section.

2.1 Basic Description

As was described in Heath, et al., (1992), the
HJM interest rate model for the forward curve
x — 7(t, z) is fixed by the structure of its volatility
o and the market price of risk. In this case,
r(t,x) is the notation used to denote the forward
rate at time ¢t with maturation date ¢t + z. In
this model, we consider a default free, frictionless
bond market with perfectly divisible bonds on
a filtered probability space (Q, F, {Fi}t>0, P).
Furthermore, we denote the price at time ¢ of a
zero coupon bond maturing at t + = by p(t, z),
where z is time to maturity and

p(ta l‘) = exp {_y(ta 1‘)} s
where the period yield y(t,z) is defined by

y(t,z) = /096 r(t, s)ds.

x
The expression / -(t,s)ds denotes integration

0
with respect to time to maturity x. Also, r(t,z)
the forward rate contracted at t maturing at ¢+ x
has the form

_ Ologp(t, )
ox

Moreover, we denote the short rate by R(t), where
R(t) = r(t,0). As is well-known the HJMM
approach addresses the question of the modelling
of the dynamics for the entire forward rate curve.
Here the yield curve r is the state variable rather
than the short rate R.

r(t,x) =

As regards notation, in the ensuing discussion the
forward rate at time ¢ with maturation date ¢+ z,
is simply denoted by r(t). From Filipovié, (2001),
we know that every classical HJM model can
more or less be realized as a stochastic differential
equation (SDE) of the form

{ dr(t) = (Ar(t) + D) dt + o (r®)AW (@), )
r(0) = r*(0),

where W is an m-dimensional Wiener process,

o(r(t)dw (t) = iaj(r(t))de(t) and the ini-

tial curve {r*(0,z) : =z > 0} is interpreted as
the observed forward rate curve. This equation
evolves on some open convex subset I/ in a sep-
arable Hilbert state space H (to be specified in
Subsection 2.2 below) of forward rate curves. More
specifically, we have for A, D € L(U,H) and o
that

A:aﬂ:DomAC’H—VH; D:UCH—=H,;
T
, Om) U CH—H™,

o= (o1, 09, ...

respectively. Also, the model must be arbitrage-
free which leads to the existence of an equivalent
local martingale measure Q ~ P. In this case the
drift term in the equation (1) can be written in
terms of the volatility, o, and be specified as

0 0 N
%r(t) +D(t) = %r(t) + U(r(t))/o o(r(s))ds.
(2)

Here (1) is commonly referred to as the HIMM
equation and (2) is called the HIMM drift
condition. This means that the pricing for-
mula for interest rate sensitive contingent claims
only depend on o. Furthermore, the deterministic
counterpart of the stochastic linear HIJMM inter-
est rate model (1) may be represented as

dr(t) = (Ar(t) + D(t)) dt,
{0 = ©)



2.2 State Space

Our choice of state space of forward rate curves
may be described as follows. Firstly, we have
to assume that our state space H is separable.
Furthermore from Filipovié¢, (2001) we know that
it is preferable that H is continuously embedded
in C([0,00); R). In other words, for any choice of
x € [0,00) the pointwise evaluation r — r(z)
is a linear functional on A that is continuous.
Furthermore, H contains the constant function 1.
We also insist that the family of right shifts

Syr=r(t+ z) for ¢ € [0, 00) (4)

forms a strongly continuous semigroup on H with

generator —. Furthermore, we may assume that

ox

the domain of — has the form
ox

{h € HNC'([0,00);R) : o

2hE’H}.

The state space described above has all the prop-
erties needed to perform our analysis in the sequel
in an economic setting. For the purposes of our
discussion, however, we need to bear in mind that
the stochastic differential equation (1) evolves on
some open convex subset U of the state space H
and not on H itself. Furthermore, since every sub-
set of a separable inner product space is separable
we have that U described above is also separable.

2.3 An Appropriate Subclass of HIMM Interest
Rate Models

From Zabczyk, (1991) we know that if u(-) €
Uzg C U then for 7(t) from the partially observ-
able infinite dimensional HJMM model of the form

di(t) = (AF(t) + D()u(t)) dt + o dW (1)
dz(t) = CT(t) + FdW (t), (5)
r(0) = r*(0),

where D(t) in (1) acts on u that belongs to some
admissible control set U,q C U, the Kalman filter

r(t) = E{7(t)|2;} = E{7(1)| 2/}

is the mild solution of the linear HIMM interest
rate model

D(t)u(t)) dt + o (r(t))dW (1),
(6)

where u(t) is given as

t +/0 K(t,s)dz(s) (7

(see Petersen, et al., 2003). Also, we have that

D(t) = o(r(1) / "o (r(s))ds ®
and

o(r(-)) = P()C*"(FQF*)™'F, (9)

with the linear operator P(-) satisfying the alge-
braic Riccati equation

%(P(t)h, k) — (P(t)h, A*k) — (A*h, P(t)k)
—(0 Qo *h, k) + (P(t)C* (FQF*)"'CP(t)h, k) = 0,

P(0) = Py, h k€ D(A%).

We note that this special subclass of HIMM in-
terest rate models for the forward curve r(¢) given
by (6) is fixed by the structure of its volatility o
in (9) that, in turn, may be expressed in terms of
the coefficients and covariance associated with a
partially observable interest rate model of the type
given by (5). Furthermore, we assume that P may
be chosen in such a way that the volatility (9) is
(locally) Lipschitz continuous in 7. From Filipovié,
(2001) we have that in this case, o can be shown to
be (locally) bounded. An important consequence
of this is that the linear operator D(t) in (6) is
(locally) bounded which is a prerequisite for the
analysis in the sequel.

As was demonstrated in Da Prato and Zabczyk,
(1992) and Filipovi¢, (2001) developing a notion of
solution for general infinite dimensional stochastic
systems can be a tricky business. For instance,
it is well-known that we are able to distinguish
between mild, weak and strong solutions of such
systems. In particular, strong solutions are very
seldom encountered in the context of interest
rate models. Under the conditions specified in the
previous paragraph (see Zabczyk, 1991, for more
details), we are able to write the mild solution
r(t;ro,u) of (6) explicitly as

/Sts u(s)ds

; / Si-so(r(s)dW(s).  (10)

r(t;ro, u) = Spr™(

In addition, we note that a deterministic counter-
part of (6) may be given as

dra(t) _ Arq(t) + D(t)v(t), (11)
ra(0) = r3(0),

with a solution of the form



ra(t) = Siry(0

/ Si—sD (12)

2.4 Important Applicable Results

The following information from Petersen et al.
(2003) will be utilised in our subsequent discus-
sions:

Under the conditions specified in Subsection 2.3
and Section 3 of Petersen et al. (2003), the mild
solution 7(t;rg,u) of the HIMM interest rate
model (6) is given explicitly as in (10), where D(t)
in the drift term from (6) can be written in terms
of the volatility o as

D(t) = o(r(t))/ozo(r(s))ds. (13)

and the optimal control, u°(t), is found to be

WO(t) = ~D(t)* S5, {(T]) " (Srro — B(h)
n / (CT) " [Sr_so(r(s)) h(s)]dW<s>}

where T' represents the deterministic controllabil-
ity operator given by

7= [ srean

3. APPLICATIONS TO HO-LEE,
HULL-WHITE, BLACK-KARASINKI AND
COX-INGERSOLL-ROSS MODELS

D(t)* S _dt. (14)

The main question that we hope to answer in this
our main section, may be formulated as follows:

What results do we obtain when we apply the
general arguments in Petersen et al. (2003) to
specific interest rate models like Ho-Lee, Hull-
White, Black-Karasinski and Coz-Ingersoll-Ross
models ?

3.1 The Ho-Lee Model

Historically, the Ho-Lee model (see Ho and Lee,
1986) was the first of the deterministic no-
arbitrage models for interest rates. Ho and Lee
pioneered the approach that proposed an exoge-
neous evolution for the term structure of rates
in contrast with the endogeneous models that
reproduced current term structures. Their model
is based on the assumption that rates evolve as a
binomial tree. In our discussion, we use the contin-
uous time version as derived by Dybvig (Dybvig,
1988) and Jamshidian (see Jamshidian, 1988). It

cannot, however, be regarded as a proper exten-
sion of the Vasicek model (see Vasicek, 1977),
since in the continuous case it does not retain
the mean reversion property in the short rate
dynamics.

The Ho-Lee model for the instantaneous short
rate is given by

dr(t) = 0(t)dt + odW (t). (15)

Furthermore, in this case, it follows that the
diffusion coefficient may be represented as

o(r(t)) =o.

This information leads us to the following conclu-
sions about the linear operators D(¢), I'l and the
optimal control u°(t) for the Ho-Lee model with
mild solutions.

D(t) = o’x; (16)
I'T = g%2%(T — 5); (17)
1

3.2 The Hull-White Model

Due to the poor fitting of the initial term structure
as implied by the Vasicek model (see Vasicek,
1977) extensions were addressed in subsequent
papers. Although Ho and Lee (1986) did, to some
extent, address the deficiencies in the Vasicek
model, it cannot be regarded as a proper extension
as it does not retain the mean reversion property
in the dynamics of the Vasicek model. Hull and
White (1990) proposed to include an additional
deterministic parameter to the drift coefficient.
This determinsitic model is still being used for risk
management purposes today, and is of historical
importance as procedures developed for it are
easily applied to some of the other models in this
class. A drawback, as in the case of the Vasicek
model, is that this model allows for negative
interest rates and is thus hardly applicable to
concrete pricing.

The Hull-White model (see Hull and White,
1990a, 1990b, 1993a, 1993b, 1994a, 1994b and
1994c) for the instantaneous short rate is given
by

dr(t) = (B(t) — ar(t))dt + odW(t)  (18)



The diffusion coefficient for the Hull-White model
is

o(r(t)) = oce™°".

We make the following conclusions about the
linear operators D(t), T and the optimal control
u®(t) in terms of the mild solution for the Hull-
White model

2

D(t) = e “*[L e ); (19)
7 = ”—[1 e TP(T —5);  (20)

3.3 The Black-Karasinski Model

The Black-Karasinski model (see Black and Karasin-

ski, 1991) is a generalisation of the Black-Derman-
Toy model (see Black, et al., 1990). It addresses
the problem of a negative short rate by utilis-
ing a lognormal short rate model. This seems a
reasonable choice as the lognormal distribution is
often chosen in market formulas, e.g. Black and
Scholes, (1973). On the negative side this model
in not analytically tractable. This makes for more
difficult calibration than the Gaussian models like
Hull-White, as explicit models for bonds do not
exist. Another and more fundamental drawback
is that the expected value of a money market
account is infinite no matter what maturity is
considered. This problem can partly be overcome
by approximating the model using a tree in a
similar fashion to when we are working with a
finite number of states and by implication finite
expectation.

The Black-Karasinski model for the instantaneous
short rate may be represented by

dr(t) = r(t) (a(t) + % - alnr(t)) dt
For(t)dW (t). (21)

The diffusion coefficient for this model is given by

a(r(t)) = or(t).

For the Black-Karasinksi model we make the
following conclusions about the linear operators
D(t), TT and the optimal control u°(¢) in terms
of the mild solution.

D(t) = o?r(t) /UgE r(s)ds; (22)

x [or(t+T —s) — h(s)]|dW(s)}.

3.4 The Cox-Ingersoll-Ross Model

The Cox-Ingersoll-Ross model (see Cox, et al.
1985) aims to address the deficiencies in the Va-
sicek model (see Vasicek, 1977), namely allowing
negative interest rates with positive probability.
Negative interest rates would correspond to being
paid for borrowing. While this has happened in
the past, e.g., in Japan, it is irregular and unlikely.
This led to the introduction of the ”square-root”
term in the diffusion coefficient of the instanta-
neous short rate. The CIR model has been re-
garded as a benchmark for many years, because
the instantaneous short rate is always positive
and it is analytically tractable. The CIR model
is however less tractable than the Vasicek model,
especially where the extension to the multi factor
case is concerned.

The CIR model for the instantaneous short rate
is given by

dr(t) = a(b—r(t))dt + o/r(t)dW(t) (24)

The diffusion coefficient may be represented by

o(r(t)) = o\/r(t).

For the CIR model we deduce the following about
the linear operators D(t), I'T and the optimal
control u°(t) in terms of the mild solution.

D(t) = o*\/r(t) /09E Vr(s)ds; (25)

ot ([ Jm_s)ds)Qrm(T — ) (26)



ul(t) = —o/r(T) /Of” \r(s)ds

X (04 (/0 \/r(—s)ds>2 r(T)T)

x(r(T) = E(h))

+/0t (04 (/0 \/r<_s>ds>2r<T>T>_

x [o\/rt+T —5) — h(s)]dW(s)} .

4. CONCLUSION AND ONGOING
INVESTIGATIONS

In this paper we have investigated the notion
of stochastic controllability for the Ho-Lee, Hull-
White, Black-Karasinsky and Cox-Ingersoll-Ross
linear interest rate models that belong to the
general class of HIMM models.

The results in this paper are by no means defini-
tive and may be extended to include more areas
of application for linear interest rate models of
HJMM type. Also, we would like to derive numer-
ical examples to illustrate the theory developed in
this paper more clearly.
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