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Abstract: The paper presents algorithms to compute time-optimal solutions for
a two-link robotic manipulator operating in the horizontal plane subject to
control (motor input voltage) constraints. The system dynamic equations with
the inclusion of actuator dynamics are derived using Lagrange’s formalism.
Application of Pontryagin Maximum Principle (PMP) results in a nonlinear two-
point boundary value problem (TPBVP). The singular control problem is solved by
using an e-transformation method. The solution of the voltage-constrained model
relied on good initial guesses of the adjoint variables’ boundary conditions and the

final time.
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1. INTRODUCTION

There is a great demand for applications of robots
in manufacturing processes and medical applica-
tions especially for high precision laser eye surgery
and cancer treatment. It is expected that these ap-
plications should be accompanied by an increase
in efficiency, precision, safety and cost savings.
Two categories of motion can be identified during
the operation of a robotic manipulator: a) point-
to-point motion, and b) prescribed path tracking
(Chettibi and Lehtihet, 2002). The present work,
which is an extension of the work in (Pedro, 2003),
concentrates on time optimal control of robot
point to point motion as the later has been exten-
sively researched. Attempts have been made by
several authors to solve the time optimal point-
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to-point problems for robots as in (Fotouhi-C and
Szyszkowski, 1998; von Stryk, 1994; Chen and
Huang, 1993) to name a few.

The approaches for solving the optimal control
problem are twofold which are: a) direct, which
is based on nonlinear programming, and indi-
rect which is based on the application of PMP.
Most of the work done on the indirect approach
is restricted to bang-bang solutions, therefore
avoiding the more challenging singular control
cases (Fotouhi-C and Szyszkowski, 1998; Chen
and Jr, 1990), while very few address the time-
optimal control problem with both state and
control contraints (von Stryk, 1994; Shiller and
Lu, 1992). The case of singular control arising in
the solution of the problem has been dealt with
by means of an energy perturbation method as
suggested in (Chen and Huang, 1993; Chen and
Desrochers, 1993).



An indirect collocation method to solve the time-
optimal cotrol problem for robot point-to-point
motion is developed in this work. The method
is based on the application of PMP to a mod-
ified optimal control problem. The modification
is based on converting the singular time-optimal
control problem to a sequence of non-singular
ones by introducing energy pertubation param-
eters (denoted by €) in the performance index.
The proposed method can handle both singular
and non-singular controls, and a wide spectrum of
performance indices and constraints on the control
variables. This paper however does not consider
the displacement, velocity and acceleration con-
straints on the manipulator’s arms, joints and end
effector.

2. PROBLEM FORMULATION

Owing to the complexity of the mechanical struc-
ture, mathematical models of the dynamic be-
haviour of the robot are too complicated to be
completely solved with all the coefficients to be
considered. The following simplifying assumptions
are used in this paper: a) frictional forces are
neglected, b) all components and links are rigid,
c) thermal expansion of components is not con-
sidered, d) viscous friction factor in the motor
assembly is small and can therefore be neglected,
and e) gear backlash is neglected.

The problem considered here is to develop a
simple algorithm to analyze the point-to-point
motion of the two-link robotic manipulator tak-
ing into account the dynamics of the actuators
as well as their limitations. The system model
can be realized by the generalized state equation
x = f(x,u,t). The initial and final positions of the
manipulator links are given as: x(0) = xo and
x(t;) = xy. The problem is to find the control
vector, u, subject to constraints u € U such that
the performance index, J = fotf Ldt is minimised.
The perfomance index in this case is the minimum
time i.e., J = ty, where L = 1.

3. THE MATHEMATICAL MODEL

In deriving the dynamic equations of the robotic
manipulator, we include the dynamics of the dc
motors that supply the torques at the joints.
A thourough discussion on the inclusion of ac-
tuator dynamics is given in (Sage et al., 1999;
Mahmoud, 1993; Tarn et al., 1989). Figure 1
shows the robotic manipulator degrees of freedom.
Application of Lagrange formalism to the two-link
robotic manipulator gives the dynamic equations
of motion as follows:
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Fig. 1. Degrees of freedom of a rigid two-link
robotic manipulator.

M(0)6 + C(6,6) + K(0) = (6,6, 6) (1)

where 0 = [6;,6,]7 is the generalized angular
joints position vector, 7 = [y, 7»]? is the vector
of the generalized torques applied at the joints,
M(6,0) is the links’ inertia matrix, C(6,0) is the
vector of the Coriolis and centripetal torques, and
K(6) is the vector of the gravitational torques. For
the particular case being considered in this paper,
K(6) = 0, as the motion is assumed to be taking
place in the horizontal plane. Therefore, equation
(1) becomes:

M(0)6 + C(6,6) = 7(6,6,6) (2)

The dynamic equations for the armature-controlled
dc motors at the joints can be described as follows
(Engelmann and Middendorf, 1995):

di

Ri+ Lo +Kob = 3
i+Lo+ u (3)

where: R is the diagonal matrix containing the
resistances of the armature circuits, i is the vector
of armature currents, L is the diagonal matrix of
the armature circuits’ inductances, Ke is the diag-
onal matrix containing the back EMF constants,
0, is the positions of the actuators’ shafts, u rep-
resents the armature input voltages. Vector of the
supplied torques by the dc motors is 7, = Kmi,
where Ky, is the diagonal matrix containing the
motor torque constants. The relations between
the motors’ angular positions and torques to the
joints’ angular positions and torques are as fol-
lows: 0 = N6, 7 = N7p,.

Combining equations (2) and (3) gives the dy-
namic equations of motion of the robotic manipu-
lator with inclusion of the actuators dynamics as
follows:



d*0 d*9 de
JN—+Dn—5 +Cn— +Rn+Ln=u (4
th3+ thz+ th+ N+Ln=u (4)

In = [L(NKrm) ' M(6)]
Dn =]
Cn = [NK.]
Ry =
Ly =

The control constraints for the robotic manipula-
tor are as follows:

Ulmin S uy (t) S Ulmaa: (5)
U2min S UZ(t) S U2maw (6)

The dynamic equations must then be rearranged

so that they represent the rate of change of angu-
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lar accelerations ddfgl and ddfsz. Let the following

state vector be defined:
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The system equation (4) can be written in state-
space form by defining the generalised position,
velocity, and acceleration vectors as the state
vector (von Stryk, 1994):
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Making X3 the subject of equation (4):
<iz> = —J5(X))[Dn(X1, X5) X5 + CnXs

+RNn (X1, X2) + Ln (X1, Xa, X3)]
+Jy (X1)u 9

Hence, the Hamiltonian of the problem stated
above is:

H =1+ %=1+ (A)" X+ (A)" X5
—(As) "IN (X1)[Dn (X1, X2) X3
+CnXo +RN(X1,X2)+
L (X1, Xo, X3)] + I (X1)u]

(10)

Necessary optimality conditions are obtained by
applying PMP (Bryson Jr. and Y-C., 1975),
(Pontryagin et al., 1962). Defining the adjoint
variables as:

A= (Al,AQ,Ag)T, where A1 = (Al,)\g)T,Az =
(A3, 0)T, and Az = (X5, Ae)?

The necessary optimality conditions from PMP
are as follows:

s _OH  _ OH OH _
¢ ¢ 6:1?,'7 BUJ'_

N’
i=1,..6,j=1,2 (11)

0,

H(x"(£), \"(t),u* (1)) < H(x*(t), A" (%), u(t))
for t e (0,t/012)

In addition to the conditions in (11) and (12), the
final time, ¢7, can be determined from:

H(x(t), \* (£), u*(t)) = 0
)

for all t e (0,tf (13)

Since the Hamiltonian does not depend explicitly
on time.

The third condition in (11) gives the jth-component
of the switching functions (t) as:

k() = (As)" (I (X)) (14)

and the control sequence for the jth-input voltage
is:

Ujmaz if k() <0
uj = Ujmin if Kj (t) >0 (15)
singular if x;(¢t) =0

The existence of singular control is as a result of
the control variables w; and uy appearing linearly
in the Hamiltonian (10). The singular control in
(15) can be handled by introducing a perturbed
energy term to the cost function and later use this
to modify the system Hamiltonian:

H =1+ %6uTWuu +A %=1+ 16uTWuu
+(A1)TXo + (A2)T X5 — (M) "IN (X)) (16)
[Dn (X1, X2)X3 + CnXo2 + Ry (X1, X32)
+LN (X1, Xo, X3)] + I (X1)u]

where € = (e1,€2)7 is the vector of the energy per-
turbation terms. W, is a real diagonal, positive-



definite weighting matrix, or W, = diagr;. Ap-
plying PMP to the modified Hamiltonian gives a
similar set of necessary conditions to the one in
(15). The control sequence of the modified time-
optimal control is given as follows:

Ujimaz if Kj (t) <0
uj = ¢ Ujmin if Kj(t) >0 (17)
Hjm (t) lf Iijm c (U]mzn; Ujmaw)

where:

Rim () = —7(A3)TSN)_1 (18)

The solution to the modified time-optimal control
problem converges to the solution of the original
time-optimal control problem as the perturbed
parameters €1, €3 approaches zero.

4. NUMERICAL SIMULATIONS AND
DISCUSSION OF RESULTS

Numerical analysis of time-optimal control is per-
formed for a two-link robotic manipulator with
the effects of actuator dynamics. The resulting
TPBVP problem is coded in MATLAB Problem
Solving Environment (MPSE) using a library rou-
tine called bup4c (Kierzenka and Shampine, 2001).
(Kierzenka and Shampine, 2001) give the full the-
oretical and software developments for this TP-
BVP solver. The free-final time problem is con-
verted to a fixed-final time one by changing the
independent variable t to T = t/t¢, then 7 € [0, 1].
The differential equations then become:

dx dx d\ d\
and

ar ~ Tat ar ~ Tdt

(19)
with the boundary condition for computing the
final time t¢ given as:

H(x(1),A(1),u(1)) =0 (20)

The physical parameters for the robotic manipula-
tor and the dc motors (the motor used in this case
is the Faulhaber GNM70130 Engel DC Motor) are
given as follows: m; = my = 5 kg, mj» = 6.5 kg,
me, = 6 kg, M1 = My — 13.2 kg, Iml = Imz
=0.00485 kng, 11 =04 m, 12 =0.3 m, N1 = NQ =
10, L; = Ly = 0.006 Henry, R; = R = 1.45 Ohm,
Ke1 = Kez = 0.535 Volt/(radian/second), and
Ky, = Ky, = 0.5298 Nm/ampere. The initial
and final conditions for the robotic manipulator
are x(0) = [0,0,0,0]” and x(t;) = [45°,60°,0, 0]
respectively.

The energy-perturbation parameters (e; and e€3)
are used as continuation (homotopy) parameters
because of the sensitive nature of the solution to
the initial guesses for the adjoint variables, final
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Fig. 2. Time-optimal trajectories for the robotic
manipulator links.
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Fig. 3. Time-optimal angular velocities for the
robotic manipulator links.

time, and the location of the switching points.
The quality of the initial guesses for the adjoint
variables is very critical to the performance of the
TPBVP solver. An initial value of 10 is chosen for
both €; and e;. This enables faster convergence
of the numerical process for the TPBVP solver in
the MPSE. Finally, the homotopy parameters are
then gradually reduced to a value of 0.002. The
corresponding optimal final time is t} = 1.1058
sec. Figure 2 shows the time histories of the
optimal angular positions of the links. Angular
velocities of the links are shown in Figure 3.
Figure 4 shows the links’ angular accelerations.
The time-optimal adjoint variables for the robotic
manipulator are shown in Figure 5.
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Fig. 4. Time-optimal angular accelerations for the
robotic manipulator links.
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Fig. 5. Time-optimal adjoint variables for the
robotic manipulator.

5. CONCLUSIONS

The effects of actuator dynamics on the time-
optimal point-to-point motion of a two-link robotic
manipulator subject to inequality control con-
straints have been investigated in this paper. Pres-
ence of the actuator dynamics increases the degree
of the complexities of the mathematical model.
The difficult singular optimal control problem was
converted to a set of nonsingular optimal con-
trol problems by introducing energy-perturbation
terms in the performance index. The computer
simulations, using a combination of indirect col-
location methods with continuation algorithms,
have validated the efficiency and feasibility of the
proposed approach for solving this highly com-
plex, nonlinear time-optimal control problem. The
time-optimal control problem solutions converge
very quickly for the modified problem and the

initial guesses for the adjoint variables need not
be close to the solution. However, as the values of
the perturbation parameters approach zero some
convergence problems were encountered.
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