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Abstract: In this paper, a new real-time implementation of a Robust Nonlinear
Controller to the multi-input multi-output model of a power system is outlined.
The experimental setup of this power system includes a dc motor and synchronous
machine connected to a large power system through a transmission line. Some
responses of the system when the reactance of the transmission line changes
after a sudden short-circuit, and when the mechanical power abruptly changes
are presented. It is also shown that the system still keeps transient stability for
slightly more severe faults. The nonlinear controller practical results is compared
to the performance of a standard controllers such as, the automatic voltage
regulator (AVR) and power system stabilizer (PSS).
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1. INTRODUCTION

The linear controllers such as the automatic voltage
regulator (AVR) and power system stabilizer (PSS)
has been hence still used actually by industrial ap-
plications for power systems stability (kundur, 1994).
These controllers work well for some ranges of operation
points and have been efficient for a long time. But as
systems grow in complexity and size, they are not able
to keep the stability when sudden faults appear in the

transmission line. It is then necessary to develop new
controllers. Recently a number of contributions in the
area of nonlinear controllers which are independent of
the equilibrium point and take into account the severe
nonlinearities of the power system model, has been
proposed (Marino, et al., 2000; Kelemen, et al., 2000;
Bazanella and Kokotović, 1997; Wang, et al., 1993).
These new controllers of power system theoretically
guarantee the stability of synchronous generator in a
certain domain when the reactance of the transmission



line Xe changes after a sudden short-circuit, or when
the mechanical power Pm abruptly changes. Unfortu-
nately some of them supposed that the power angle is
available or measurable this assumption is quite im-
possible to obtain in practice. The controller proposed
here is based on the work of (Kelemen, et al., 2000).
Its main goal is to control the rotor speed as well as
the terminal voltage, in order to improve the system
stability under large disturbances and to obtain good
post-fault voltage regulation. Most of the methods in
the literature require the direct measure of the power
angle. Unfortunately this quantity is quite difficult to
obtain in practice. The main advantage of our method
is the fact that we do not assume the direct availabil-
ity of the power angle. In fact we propose to rebuilt
the power angle through available measures. Therefore,
practical implementations are possible.
The paper is organized as follows. The second section
presents a new model of the power system. In the third
section, we present the multivariable voltage and speed
controller design. The algorithm for the computation
of the power angle is presented in the fourth section.
In the fifth section, we describe the real-time interface
and the main experimental results of this work obtained
for one machine connected to a large power system
through a short line transmission are presented. Section
6 concludes the paper.

2. NEW MODEL OF THE POWER SYSTEMS

Several different modelling approaches exist for the de-
sign of power system controllers. On the one hand, the
single machine infinite bus approach is simple and suit-
able for voltage and speed regulator synthesis. However,
since remote dynamics are neglected, the regulator may
not perform well when inter-area oscillations occur for
instance. On the other hand, in global N-generators
modelling approach, all the generator dynamics are
represented. Speed (or power angle) controllers based
on this model damper very well inter machine and inter-
area oscillations. However, a coordinated voltage and
speed regulator based on this modelling approach has
never been proposed. (Okou, et al., 2003) has recently
introduced a novel power systems model. It combines
the advantages of both previous modelling approaches.
The new modelling approach consists in partitioning
the power system into the generator to-be-controlled
and the rest of the grid represented by a time- varying
impedance. In other words, each generator views the
rest of the network as a dynamic load. The resulting
model contains then time varying parameters modelling
operating condition variations and interactions between
generators. Hence, it captures the main characteristics
of multi-machine power systems. The sequel presents
this new power systems model. Each generator consists
of a synchronous machine and a dc motor providing
the mechanical power.

2.1 Synchronous generator dynamical model

A synchronous machine consisting of three stator wind-
ing, one field winding and two damper windings is used
as alternator. Its full order model in the d-q reference
frame is a ninth-order nonlinear differential equation
(see for instance (Peter Sauer and Pai, 1998)) which
takes into account the stator very fast dynamics, the
damper-windings and field subtransient and transient
dynamics respectively. For stability and control design,
various simplified models are adopted in the literature
(Peter Sauer and Pai, 1998). In this paper the well-
known two-axis model is used to represent the syn-
chronous machine. The stator dynamics and the sub-
transient damper-windings dynamics are neglected.
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where δ is the power angle, Efd the equivalent emf
in the excitation coil. Id, Iq, Xd and Xq represent the
current and the reactance of the generator in the d-q
reference frame. E

′
d, E

′
q, ω, Pe and Tm represent the

transient emf in the direct axis, the transient emf
in the quadrature axis, the rotor speed, the electrical
power and mechanical torque. The stator is represented
by the following two algebraic equations in which Rs =
0, usually.

Vd =E
′
d −RsId +X

′
qIq

Vq =E
′
q −RsIq −X

′
dId (2)

in which X
′
d, X

′
q, Vd and Vq represent the transient

reactance and the voltage of the generator in the d-q
reference frame.

2.2 The rest of the network model

The rest of the power system, is considered after parti-
tioning, as a dynamic load for the generator under con-
sideration. This load is represented by instantaneous
effective impedance described by the following equation

v(t) = r(t)i +
d

dt
(K(t)i)

= (r(t) +
dK

dt
)i+K(t)

di

dt
(3)

=R(t)i+K(t)
di

dt

The resistor part models the active power exchange,
whereas the reactive part is for the reactive power



exchange; v and i, are instantaneous terminal voltage
and stator current of the generator. Note that equation
(3) is an inductive type representation. The conclusion
remains unchanged however if we use a capacitive
type representation. In the d-q reference frame, after
applying a Park transformation on equation (3), we get,

Vd =R(t)Id −K(t)ωIq +K(t)
dId

dt

Vq =R(t)Iq +K(t)ωId +K(t)
dIq

dt
(4)

Applying the two axis model assumption (i.e. neglect-
ing the stator current dynamics), we obtain

Vd =R(t)Id −K(t)ωIq

Vq =R(t)Iq +K(t)ωId (5)

From (5) we can solve for Id and Iq,

Id =
R(t)Vd +K(t)ωVq

R2(t) + (K(t)ω)2

Iq =
R(t)Vq −K(t)ωVd

R2(t) + (K(t)ω)2
(6)

Equation (6) can be rewritten in the following closed
form

Id = a(t)Vd + b(t)Vq

Iq = a(t)Vq − b(t)Vd

(7)

where a(t) and b(t) are given by

a(t) =
R(t)

R2(t) + (K(t)ω)2

b(t) =
K(t)ω

R2(t) + (K(t)ω)2
(8)

Expressing a(t) and b(t) in terms of the d-q axis
voltage and current gives a better understanding of the
approach,

a(t) =
VdId + VqIq

V 2
t

b(t) =
VqId − VdIq

V 2
t

(9)

Indeed, it is easy to see that in steady state, a(t) and
b(t) are proportional to respectively the active power
and reactive power delivered by the generator (they
are equal to the active and reactive power respectively
when the terminal voltage is 1 [pu] in steady state).
In the transient period, a(t) and b(t) represent the
admittance and the susceptance seen by the generator,
respectively, and give information about the state or
operating conditions of the rest of the grid.

2.3 New power system model for the design of decentralized
controller

The computation involved in the modelling process is
essentially a change variable. The terminal voltage Vd

and Vq components are the new state variables instead
of E

′
d, and E

′
q. Using (2) and (7) we can show that E

′
d

and E
′
q are given by

E
′
d = (1 +Rsa(t) +X

′
qb(t))Vd + (Rsb(t)−X

′
qa(t))Vq

E
′
q = (1 +Rsa(t) +X

′
db(t))Vq + (X

′
da(t)−Rsb(t))Vd (10)

From (10) we can also show that the expressions of Vd

and Vq are a function of E
′
d and E

′
q (see Appendix).

After some algebraic manipulations using equations
(1), (7), and (10), we can now give a new power system
model by the following equations

V̇d = α(t)Vd + β(t)Vq + g1(t)Efd

V̇q = σ(t)Vd + γ(t)Vq + g2(t)Efd

ω̇=
1
2H

(Tm − a(t)(V 2
q + V 2

d ))−KDω (11)

δ̇ = ω − 1

The terminal voltage of one generator is given by the
following equation

Vt =
√

V 2
d + V 2

q (12)

It is important to note that the modelling approach
leads to a model, with locally measurable state vari-
ables. Vd and Vq are used as state variables leading to a
simpler expression for the terminal voltage as an output
variable. The time-varying parameters α(t), β(t), σ(t),
γ(t), g1(t) and g2(t) depend on a(t) and b(t) hence on
the operating conditions of the power system. They
have fixed values in steady state and their expressions
are given in the Appendix section. These parameters
encapsulate the interactions between the generator to-
be-controlled and the rest of the power system. It is
shown in (Okou, et al., 2003) that each time-varying
parameter α(t), β(t), σ(t), γ(t), g1(t) and g2(t) can be
decomposed into two parts: a fixed part and a time
varying one. The electrical part of the model can then
be written as:

V̇d = (α0 + αt)Vd + (β0 + βt)Vq + (g10 + g1t)Efd

V̇q = (σ0 + σt)Vd + (γ0 + γt)Vq + (g20 + g2t)Efd

ω̇=
1
2H

(Tm − a(t)(V 2
q + V 2

d ))−KDω (13)

where the parameters α0, β0, σ0 γ0, g10 and g20 are
the fixed parts and depend on the steady state active
and reactive power delivered by the generator to-be-
controlled (see Appendix). αt, βt, σt, γt, g1t and g2t are
the dynamic parts of the parameters. They represent



the rest of the power system influence on the generator
under consideration. Therefore, when the generator
interacts with an infinite bus, they can neglected and
then set to zero in equations (13).

2.4 dc motor dynamic model

The synchronous generator is driven by a dc motor.
The dynamic model of the dc motor is given by the
following equations

i̇a =
1
La

(−Raia −Kmω + ua)

Tm =Kmia (14)

3. MULTIVARIABLE VOLTAGE AND SPEED
CONTROLLER DESIGN

The goal of the control is to keep all states and output
bounded and asymptotically converging to their refer-
ence values. Because the system considered is nonlinear,
the determination of stability depends upon finding a
suitable Lyapunov function or some equivalent method.
This section deals with a procedure for the synthesis of
a power system controller solving simultaneously the
transient stability and the voltage regulation, when the
system undergoes severe disturbances. The system to-
be-controlled consists of a synchronous machine con-
nected to a large power system through a short trans-
mission line. A separated excited dc motor provides
the generator mechanical power. The system dynamics
can be described by the following equations

V̇d = α0Vd + β0Vq + g10Efd

V̇q = σ0Vd + γ0Vq + g20Efd (15)

ω̇=
1
2H

(Kmia − a(t)(V 2
q + V 2

d ))−KDω

i̇a =
1
La

(−Raia −Kmω + ua)

δ̇= ω − 1

The variables ia and ua are the dc motor armature
current and voltage respectively; Km, Ra, H and KD

are the motor torque constant, the armature resistance,
the inertia constant and the damping torque coefficient
respectively.
The design process is now described in two steps
consisting of linearizing the dynamics (15) by a suitable
change of coordinates and inputs, and stabilizing the
partially linear model obtained.
Step 1: Linearizing control
An integral action is introduced in the controller by
redefining the system outputs to be the integral of the
errors on the terminal voltage and the rotor speed,
respectively.

y1(t) =

t∫
0

(V 2
d (τ) + V 2

q (τ) − 1)dτ

y2(t) =

t∫
0

(ω(τ)− 1)dτ (16)

Remark: the second equation (16) can be interpreted
as an indirect utilisation of the power angle in the
design process.
The first part of the design procedure consists of
finding a nonlinear change of coordinates transforming
system into a canonical form and a partially linearizing
nonlinear state feedback control law (Akhrif, et al.,
1999; Isidori, 1989). Let us consider the following time-
varying change of coordinates,

z1 =

t∫
0

(V 2
q + V 2

d − 1)dτ

z2 = (V 2
q + V 2

d − 1)

z3 =

t∫
0

(ω − 1)dτ (17)

z4 = (ω − 1)

z5 =
ωs

2H
(Kmia − a0(V 2

q + V 2
d )−KDω)

η1 =E
′
d

Differentiating equations (17) and introducing the

Fig. 1. Functional block diagram of the multivariable
voltage and speed controller

parameters estimated values where necessary, we get
the system dynamics in the new coordinates,

ż1 = z2

ż2 = F2(Vd, Vq) +G2(Vd, Vq)Efd

ż3 = z4 (18)

ż4 = z5

ż5 = F5(ia, Vd, Vq, Efd) +G5ua

Note that internal variable η1 is not considered in the
sequel since the associated zero dynamics are stable.



The expression of the nonlinear functions involved in
the canonical form are

F2(Vd, Vq) = 2(α0V
2
d + γ0V

2
q + β0VdVq + σ0VdVq)

G2(Vd, Vq) = 2(g10Vd + g20Vq)

F5 =−a0ωs

2H
(F2 + EfdG2)− Kmωs

2HLa
(Kmω +Raia)

G5 =
Kmωs

2HLa
(19)

The generator excitation and the dc motor input are
used to cancel some of the nonlinear terms in (20), thus
partially linearizing the system. Note that KD = 0, we
choose the two inputs control such as

Efd =
v1 − 2(α0V

2
d + γ0V

2
q + (β0 + σ0)VdVq)

2(g10Vd + g20Vq)
(20)

ua =
2HLa

ωsKm
(v2 − (

K2
mωs

2HLa
ω − KmRaωs

2HLa
ia − a0ωs

2H
v1))

The variables v1 and v2 are auxiliary inputs yet to
be determined and are used to stabilize the closed
loop system and attenuate the perturbations effects.
Note that G2(Vd, Vq) = 0 during a short-circuit at the
generator terminal, the excitation Efd equals Efdmax

or Efdmin depending on the sign of v1.

Step 2: The stabilizing auxiliary input
Replacing equations (20) in the canonical form (18), we
get the system closed loop dynamics equation

Ẋ =AX +BV (21)

where A and B are defined in Appendix, with

X =
[

z1 z2 z3 z4 z5

]T

V =
[
v1 v2

]T

We propose to choose the linear stabilizing auxiliary
control V of the form

V =


 v1

v2


 = −

[
kv1 kv2 kv3 kv4 kv5

kw1 kw2 kw3 kw4 kw5

]



z1

z2

z3

z4

z5




The gain K is such that As = A−BK is stable.

4. POWER ANGLE ALGORITHM

Using Park transformation, the electrical active power
and reactive power output of the generator in terms of
d-q axis can be written as follows:

Pe = VdId + VqIq (22)

Qe = VdIq − VqId

To illustrate the procedure of finding the power angle,
we consider the algorithm described in (Damm, 2001)
which uses the transmission line reactance Xe, the
electrical power Pe, the terminal voltage Vt and the
infinite bus voltage Vs, where the generator terminal
voltage Vt and the active power Pe are measurable, then
the main result of this section is

δ = arc cot(
Vs

XePe
(−XdVs

Xds
+

√
V 2

t − X2
eP

2
e

V 2
s

)) (23)

whereXd is the direct axis reactance, withXds = Xe+Xd

5. IMPLEMENTATION AND RESULTS

Fig. 2. Simplified representation of the power system
experimental setup

This section covers experimental aspects. We consider
the case of a synchronous generator connected to a large
power system through a transmission line.

5.1 Per unit constants

In this work, the nominal values of voltage, current,
power and impedance are respectively VN = 230 [V],
IN = 2.2 [A], SN = 1518 [VA] , ZN = 104.55[Ω ].
We should note that, in practice all the three-currents
and three-voltages values are measured, and all quanti-
ties are normalized with respect to the nominal values.
This means that quantities are expressed in per unit.
We calculate the instantaneous three-phases power out-
put of the generator in terms of d-q axis.



5.2 dc motor

Synchronous generator is driven by a dc motor de-
scribed by the electrical parameters such as: the voltage
is ua = 0.956[pu], and the current is ia = 4.09[pu];
which supplies the mechanical power. Note that the
dc motor voltage is supplied by a unit converting dc
voltage to dc voltage tuning. The dc motor constants
are given as follows
Ra = 0.0459[pu]; La = 0.1893[pu]; τe = 0.0133[s];
τem = 0.373[s]; Km = 0.2690

5.3 Synchronous generator

The synchronous generator is connected in a wye,
and described by the electrical parameters such as:
the terminal voltage is Vt = 1[pu], and the electrical
power is Pe = 1[pu]; the synchronous field current is
iF = 0.863[pu] at uF = 0.208[pu]. The field voltage is
supplied at synchronous generator by a unit converting
dc voltage to dc voltage tuning.
The synchronous generator delivers electrical power to
a large power system, the three-phases transmission
line has the same impedance value.
The synchronous machine and line constants are given
(in per unit) as follows:
Xd = 1.0216; X

′
d = 0.707; Xq = 0.613

X
′
q = 0.950; H = 0.197; KD = 0; T

′
d0 = 0.266[s]

T
′
q0 = 0.044[s]; Rs = 0.044; Xe = 4.4; Re = 0.1243

The generator controller’s gain is give by

K =
[
5.9994 4.7392 − 10.1081 − 10.7310 − 3.3936
−4.3229 − 2.4662 35.4354 37.6049 19.9608

]

which is computed by pole position methods

5.4 Real time interface (dspace software)

For the software implementation we use two modules,
the pc and the digital signal processor (dsp) system,
as it is shown in fig. 2. A synchronous machine con-
nected to a large power system is studied using a
digital signal processor. The dspace’s real-time board
is installed to the pc via a bus interface. To observe
the variables of a running real-time application we use
a controldesk programm which is in the dspace sys-
tem. matlab/simulink is used for constructing control
models; the C code is automatically generated by the
real time workshop (rtw) in connection with dspace’s
real time interface (rti) for the ds1103ppc controller
board (rti1103). rti is the interface between simulink
and the various dspace platforms.

5.5 Experimental results

When the generator has just been synchronized to the
infinite bus, at the synchronization δ = 0, the generator

is rotating at synchronous speed corresponding to 50
[Hz]. In this section we present some practice results
obtained when one of the three-lines is out of service
after a short-circuit fault at t = 6.4 [s] and when the
mechanical power abruptly changes at t = 33 [s]. We
consider the operating point of the power system where
δ = 1.02 radians, Pe = 0.163 [pu] and Vt = 1.02
[pu]. It can be seen (figures 3-7) that nonlinear control
maintains the transient stability and achieves satisfied
post fault voltage level of the power system for slightly
more severe fault.
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Fig. 3. Terminal voltage of the generator after a short-
circuit and when the mechanical power abruptly
changes.
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Fig. 4. Rotor speed of the generator after a short-circuit
and when the mechanical power abruptly changes.
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Fig. 5. Power angle after a short-circuit and when the
mechanical power abruptly changes.

5.6 Transient stability and voltage regulation

Transient stability is the ability of the power system
to maintain synchronism when subjected to a severe
transient disturbance. The key question of transient
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Fig. 7. Electrical reactive power after a short-circuit
and when the mechanical power abruptly changes.

stability is : After the transient period, will the system
lock back into a steady-state condition, maintaining
synchronism ? If it does the system is said to be tran-
sient stable (Bergen, 2000).
Voltage stability is the ability of a power system to
maintain steady acceptable voltages at all buses in the
system under normal operating conditions and after
being subjected to a disturbance. In this work, we test
the system under different faults. Firstly when a sudden
fault occurs close to the generator terminal at t = 6.4
[s]. Next, when the mechanical power Pm delivered by
the dc motor abruptly changes at t = 33 [s]. The
figures (3-7) show the following dynamics responses:
the terminal voltage Vt, the speed rotor ω, the power
angle δ, the electrical power Pe, the reactive electrical
power Qe

The results of the implementation shown in the figures,
where all plotted quantities are given in pu, prove that
the post-fault generator speed is practically equal to
ωs = 1 [pu]. Then the speed deviation ∆ω is very much
smaller than ωs; hence the system still keep transient
stability as it can be seen. From the practice results,
it can be observed that the controller stabilizes the
disturbed system and the post-fault voltage is equal
to the pre-fault value.
As it clear from the figures (8-12), the Robust Nonlin-
ear Controller performance is compared to linear con-
troller (AVR/PSS) performance; from dynamics time
responses we can see that, the terminal voltage and the
rotor speed converge to their reference values. The Ro-
bust Nonlinear Controller guarantees a good post-fault

voltage regulation and controls the speed generator as
well as the terminal voltage.
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Fig. 8. Linear and nonlinear controllers; generator ter-
minal voltage, when a large disturbance occurs
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Fig. 9. Linear and nonlinear controllers; power angle,
when a large disturbance occurs
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Fig. 10. Linear and nonlinear controllers; generator
speed, when a large disturbance occurs
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Fig. 11. Linear and nonlinear controllers; electrical
power, when a large disturbance occurs
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Fig. 12. Linear and nonlinear controllers; electrical
reactive power, when a large disturbance occurs

6. CONCLUSION

In this paper we propose a new Robust Nonlinear
Controller for a one machine connected to a large
power system as an alternative solution to solve some
difficult problems frequently encountered in real-time
implementations of Powers systems.
First, the practical results observed by nonlinear con-
troller show that the nonlinear control can greatly im-
prove transient stability and achieve voltage regulation,
when the transmission line reactance changes.
Second, the power angle algorithm and all of our ap-
proach is robust as it is shown in the practice results
(fig.3, fig. 4, fig. 8 and fig. 9). Finally the nonlinear
controllers using δ as state variable can be easily im-
plemented.
Future work will consist in extending the application
of this Robust Nonlinear Control to a multi-machine
system.
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APPENDIX

D= (1 +Rsa(t) +X
′
db(t))(1 +Rsa(t) +X

′
qb(t)) + (−X

′
da(t) +Rsb(t))(−X

′
qa(t) +Rsb(t))

D0 =−T
′
q0T

′
d0((b0Rs − a0X

′
q)(a0X

′
d − b0Rs) + (1 + a0Rs + b0X

′
q)(1 + a0Rs + b0X

′
d))

α0 =
(−T

′
q0(b0Rs − a0X

′
q)(b0Rs − a0Xd)− T

′
d0(1 + a0Rs + b0X

′
d)(1 + a0Rs + b0Xq))

D0

β0 =
(T

′
q0(−a0X

′
q + b0Rs)(1 + a0Rs + b0Xd)− T

′
d0(1 + a0Rs + b0X

′
d)(a0Xq − b0Rs))

D0

σ0 =
(T

′
d0(a0X

′
d − b0Rs)(1 + a0Rs + b0Xq) + T

′
q0(1 + a0Rs + b0X

′
q)(−a0Xd + b0Rs)

D0

γ0 =
(−T

′
d0(a0X

′
d − b0Rs)(a0Xq − b0Rs)− T

′
q0(1 + a0Rs + b0X

′
q)(1 + a0Rs + b0Xd))

D0

Efd =
MFωs√
2rF

uF

Vd =
(1 +Rsa0 +X

′
db0)

D
E

′
d − (−X

′
qa0 +Rsb0)

D
E

′
q

Vq =
(1 +Rsa0 +X

′
qb0)

D
E

′
q +

(−X
′
da0 +Rsb0)

D
E

′
d

g10 =
−T

′
q0(−a0X

′
q + b0Rs)

D0

g20 = T
′
q0

(1 + a0Rs + b0X
′
q)

D0

a0 =
Pe

V 2
t

b0 =
Qe

V 2
t

La: dc motor inductance;
Ra: dc motor resistor;
ia: dc motor current;
ua: dc motor voltage;
Km: dc motor static gain;
τe: dc motor electrical time constant;
τem: dc motor electrical and mechanical time constant;
Id, Iq: direct axis and quadrature axis currents ;
Vd, Vq: direct axis and quadrature axis terminal volt-
ages;

A=




0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0




B =




0 0
1 0
0 0
0 0
0 1




uF : excitation voltage(input of the a unit converting
dc voltage to dc voltage tuning of the generator);
ωs: synchronous speed ;
ωg: generator speed ;
ω: relative speed of generator;
δ:Power angle;
Qe: reactive power;
Pe: active power (input of power control system);
Vs: infinite bus voltage;
Efd: equivalent EMF in the excitation coil;
Eq: EMF in the quadrature axis;
E

′
q: transient EMF in the quadrature axis;

T
′
d0: direct axis transient open-circuit time constant (in

s);
H : inertia constant (in s);
KD: per-unit damping torque coefficient;
Xd: direct axis reactance;
Xq: quadrature axis reactance;
X

′
d: direct axis transient reactance;

X
′
q: quadrature axis transient reactance;

Xds = Xd +Xe;
X

′
ds = X

′
d +Xe;

E
′
d :is the transient EMF in the direct axis;

E
′
q :is the transient EMF in the quadrature axis

T
′
d0 =

LF

rF
:is the direct axis transient open-circuit time

constant .
T

′
q0 :is the quadrature axis transient open-circuit time

constant


